du.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gyhlesten Back, Jessica
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Microstructure analysis of martensitic low alloy carbon steel samples subjected to deformation dilatometry2019In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 157, article id 109926Article in journal (Refereed)
  • 2.
    Yvell, Karin
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Grehk, T. M.
    Engberg, Göran
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Microstructure characterization of 316L deformed at high strain rates using EBSD2016In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 122, p. 14-21Article in journal (Refereed)
    Abstract [en]

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s− 1 at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneous and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain.

  • 3.
    Yvell, Karin
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Grehk, T. M.
    Hedström, P.
    Borgenstam, A.
    Engberg, Göran
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    EBSD analysis of surface and bulk microstructure evolution during interrupted tensile testing of a Fe-19Cr-12Ni alloy2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 141, p. 8-18Article in journal (Refereed)
    Abstract [en]

    Abstract The microstructure evolution in both surface and bulk grains in a pure Fe-19Cr-12Ni alloy has been analyzed using electron backscatter diffraction after tensile testing interrupted at different strains. Surface grains were studied during in situ tensile testing performed in a scanning electron microscope, whereas bulk grains were studied after conventional tensile testing. The evolution of the deformation structure in surface and bulk grains displays a strong resemblance but the strain needed to obtain a similar deformation structure is lower in the case of surface grains. Both slip and twinning are observed to be important deformation mechanisms, whereas deformation-induced martensite formation is of minor importance. Since the stacking fault energy (SFE) is low, 17mJ/m2, dynamic recovery by cross slip of un-dissociated dislocations is unfavorable. This reduces the annihilation of dislocations which in turn leads to a significant increase of low angle boundaries with increasing strain. The low SFE also favors formation of deformation twins which reduces the slip distance, leading to a hardening similar to the Hall-Petch relation. The combination of a low ability for cross-slip and a reduced slip distance caused by twinning is concluded to be the main reason for maintaining a high strain-hardening rate up to strains close to necking.

  • 4.
    Yvell, Karin
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Grehk, T. M.
    Hedström, P.
    Borgenstam, A.
    Engberg, Göran
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Microstructure development in a high-nickel austenitic stainless steel using EBSD during in situ tensile deformation2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 135, no Supplement C, p. 228-237Article in journal (Refereed)
    Abstract [en]

    Plastic deformation of surface grains has been observed by electron backscatter diffraction technique during in situ tensile testing of a high-nickel austenitic stainless steel. The evolution of low- and high-angle boundaries as well as the orientation changes within individual grains has been studied. The number of low-angle boundaries and their respective misorientation increases with increasing strain and some of them also evolve into high-angle boundaries leading to grain fragmentation. The annealing twin boundaries successively lose their integrity with increasing strain. The changes in individual grains are characterized by an increasing spread of orientations and by grains moving towards more stable orientations with 〈111〉 or 〈001〉 parallel to the tensile direction. No deformation twins were observed and deformation was assumed to be caused by dislocation slip only.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf