du.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Edvardsson, Karin
    et al.
    Dalarna University, School of Technology and Business Studies, Construction.
    Magnusson, Rolf
    Dalarna University, School of Technology and Business Studies, Road Technology.
    Impact of fine materials content on the transport of dust suppressants in gravel road wearing courses2011In: Journal of materials in civil engineering, ISSN 0899-1561, E-ISSN 1943-5533, Vol. 23, no 8, p. 1163-1170Article in journal (Refereed)
    Abstract [en]

    A significant problem when dust-suppressing agents are used on gravel roads is that they tend to leach during rainfall. The purpose of this study is to illustrate this problem by using laboratory studies and studies in situ. Both capillary rise and leaching of suppressants were examined by using cylinders filled with wearing course material. Chloride was more prone than lignosulphonate to transport upwards by means of capillary rise, and therefore, it showed a more effective performance over a longer period of time. Optimal percentages of fine material for minimal lignosulphonate and chloride leaching were found to be 15% by weight and 10-15% by weight, respectively. Ions of calcium chloride seemed to flocculate clay particles, which probably prevents them from leaching. To study the in situ longevity of fine material in general, calcium carbonate, mesa, was used as a marker. The fine material in gravel wearing courses must be replenished regularly. Mesa loss was up to 80% after 1 year. DOI: 10.1061/(ASCE)MT.1943-5533.0000282. (C) 2011 American Society of Civil Engineers.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf