du.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Habainy, J.
    et al.
    Iyengar, S.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Lee, Y.
    Dai, Y.
    Formation of oxide layers on tungsten at low oxygen partial pressures2018In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 506, no SI, p. 26-34Article in journal (Refereed)
    Abstract [en]

    This work focuses on the oxidation of tungsten in inert gas atmospheres containing oxygen and moisture. It is particularly relevant for the European Spallation Source where the tungsten target is cooled by purified helium gas and the 5 MW proton beam can raise the maximum target temperature beyond the threshold for oxidation. Tungsten discs were oxidized isothermally at 400° to 900 °C for 2 h in pure helium and helium mixed with oxygen and water vapor, with varying partial pressures up to 500 Pa. Tungsten was oxidized even with a small amount of oxygen (≤5 ppm) present in industrially pure helium. Non-isothermal oxidation of tungsten foils was carried out in water vapor (∼100 Pa), in situ in an environmental scanning electron microscope. On specimens oxidized in inert gas containing water vapor (2 h, pH2O" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">pH2O ∼790 Pa), Auger electron spectroscopy studies confirmed the presence of a thin oxide layer (40 nm) at 400 °C. At 500 °C the oxide layer was 10 times thicker. A dark, thin and adherent oxide layer was observed below 600 °C. Above this temperature, the growth rate increased substantially and the oxide layer was greenish, thick and porous. Oxide layers with varying stoichiometry were observed, ranging from WO3 at the surface to WO2 at the metal-oxide interface. For comparison, oxidation of tungsten alloysin He-5%O2 was studied. The implications of this work on the design and operation of the helium loop for cooling the target are discussed.

  • 2. Jayamani, Jayaraj
    et al.
    Krishnaveni, P.
    Krishna, D. Nanda Gopala
    Mallika, C.
    Mudali, U. Kamachi
    Corrosion investigations on zircaloy-4 and titanium dissolver materials for MOX fuel dissolution in concentrated nitric acid containing fluoride ions2016In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 473, p. 157-166Article in journal (Refereed)
    Abstract [en]

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a dissolution catalyst in boiling nitric acid for an effective dissolution of the spent fuel. High corrosion rates were obtained for the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO3 + 0.05 M NaF. Complexing the fluoride ions either with Al(NO3)3 or ZrO(NO3)2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. From the obtained corrosion rates it is concluded that CP-Ti is a better dissolver material than Zr-4 for extended service life in boiling 11.5 M HNO3+0.05 M NaF, when complexed with 0.15 M ZrO(NO3)2. XPS analysis confirmed the presence of TiO2 and absence of fluoride on the surface of CP-Ti samples, indicating that effective complexation had occurred in solution leading to passivation of the metal and imparting high corrosion resistance.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf