The Swedish government has authorised the teaching of mathematics in English to Swedish speaking students. Much of that teaching is performed by foreign trained native English speaking teachers lacking training in second language learners. This systematic review summarises international studies from the last ten years that deal with the teaching of mathematics to second language learners. The review shows that second language students working in a bilingual environment achieve higher rates of content and language knowledge than learners in a monolingual environment. This study also summarises some of the teacher practices that are effective for teaching mathematics in English to second language learners.
We investigate the single link mixed loss-delay FIFO system with the exponential holding time distribution, the Markovian interarrival process for the narrow-band calls, and the general independently and identically distributed interarrival process for the wide-band calls. This is achieved by combining the embedded Markov chain method and the matrix-analytic technique.
The main result of this paper is some quantitative estimates for nonlinear commutators under the complex interpolation methods and more general interpolation scales with holomorphic structures. We also investigate the spectral behaviour of bounded linear operators under this kind of interpolation methods.
We establish the connection between the variants of Schechter's complex interpolation methods, Peetre-Gustavsson's interpolation methods, and the Calderon-Lozanovskii construction on vector-valued Banach lattices. As applications, we show that the uniform convexity and the UMD property are stable byinterpolation.
In this paper, we study the K-envelopes of the real interpolation methods with function space parameters in the sense of Brudnyi and Kruglyak [Y. A. Brudnyi and N. Ja. Kruglyak, Interpolation functors and interpolation spaces(North-Holland, Amsterdam, Netherlands, 1991)]. We estimate the upper bounds of the K-envelopes and the interpolation norms of bounded operators for the K Φ-methods in terms of the fundamental function of the rearrangement invariant space related to the function space parameter Φ. The results concerning the quasi-power parameters and the growth/continuity envelopes in function spaces are obtained.
This paper concerns some properties of Lions-Peetre's interpolation methods of constants and means associated with quasi-power functions, and their applications in harmonic analysis, martingale inequalities, and geometric properties of Banach spaces. We describe Besov-Orlicz spaces and Triebel-Lizorkin-Orlicz spaces in terms of interpolation and wavelet bases. We study the commutators of quasi-logarithmic operators and singular integral operators, Hankel operators in Schatten-Orlicz classes, martingale inequalities for the partial derivative-variation, and the stability of multi-dimensional uniform rotundity under interpolation.
Some quantitative estimates concerning multi-dimensional rotundity, weak noncompactness, and certain spectral inequalities are formulated for Lions-Schechter's complex methods of interpolation with derivatives.
We investigate some properties of Hilbert spaces and bounded linear operators under quadratic interpolation in both qualitative and quantitative ways. Interpolation type, reiteration, interpolation methods associated with quasi-power function parameters, nonlinear commutator estimates, and interpolation of certain operators and spectral properties are under consideration.
We formulate the quantitative version of interpolation theorems on compactness and weak compactness, the improved estimate for the k-uniform rotundity, and even the stability of the nearly uniform convexity under Lions-Peetre's interpolation methods of constants and means associated with quasi-power function parameters.
In this paper we investigate teaching with a classroom response system in introductory physics with emphasis on two issues. First, we discuss retention between question rounds and the reasons why students avoid answering the question a second time. A question with declining response rate was followed by a question addressing the student reasons for not answering. We find that there appear to be several reasons for the observed decline, and that the students need to be reminded. We argue that small drops are unimportant as the process appears to work despite the drops. Second, we discuss the dynamics of learning in a concept-sequence in electromagnetism, where a majority of the students, despite poor statistics in a first round, manage to answer a followup question correctly. In addition, we analyse the response times for both situations to connect with research on student reasoning on situations with misconception-like answers. From the combination of the answer flows and response time behaviours we find it plausible that conceptual learning occurred during the discussion phase.
Det är populärt att läsa Byggprogrammen på gymnasierna idag. Därför har de elever som börjar dessa program relativt höga ingångsbetyg, men saknar ibland motivation att studera, trots att kompetensen finns. Branschen behöver mer ingenjörer och utbildade arbetsledare. Det här projektet tillsattes därför för att undersöka möjligheterna till ett stöd inom matematik för dessa elever. Under perioden januari – juni 2009 har en pilotstudie genomförts. Syftet var att se över möjligheterna, från Högskolan Dalarnas sida, att stötta de här eleverna i sina matematikstudier. Studenter från högskolan skulle fungera som mattekompisar till eleverna på gymnasiernas Byggprogram i Dalarna. Till en början gjordes informationssökningar och benchmarking för att ta reda på om liknande verksamheter fanns i resten av landet och hur de i så fall fungerade. Därefter utstakades en plan, med exempel hämtade från andras goda erfarenheter, för hur det här stödet skulle kunna se ut. Det resulterade i en träff på högskolan i maj 2009, då gymnasieelever kom till högskolan och fick träffa lärare och studenter på Högskolan Dalarnas Byggprogram. Träffen fick få besökare, i förhållande till inbjudna elever, men gav ett positivt gensvar. De som kom var nöjda. Slutresultatet visar att den här typen av verksamhet borde fortsätta, förslagsvis inom ramen för projektet Teknikerjakten, för att alla uppsatta mål ska kunna nås. Det behövs mer samarbete mellan gymnasielärarna internt, mellan lärare på gymnasier och högskolor samt mer personlig kontakt mellan elever och studenter.
The general purpose of this dissertation is to define and explore what mathematical problem solving entails. Seven criteria for rich problems will also be formulated. Rich problems are defined as problems which are especially constructed for mathematics education in a school context. The first part of the dissertation presents a sketch of what mathematical problem solving can entail in the teaching and learning process. The second part of the dissertation is a presentation and analysis of two ´rich´ problems. The analysis points out where mathematical ideas - concepts, procedures, conventions, strategies and formulae – appear in a problem solving process. The dissertation concludes with examples of the ways in which pupils and teachers together create occasions to utilize accepted mathematical ideas as well as the new range of ideas they devise in order to solve the problems. The concept of ´rich problems´ enables pupils with different mathematical backgrounds and capabilities to work with the same problem and solve it with various mathematical ideas. Research methods have included video- and audio recordings, stimulated recall with pupils and teachers, interviews and pupils drawings.