Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools.
Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations.
In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry.
In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed.
Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance.
Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material.
A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles.
In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.