du.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Luthander, Rasmus
    et al.
    Uppsala universitet, Fasta tillståndets fysik.
    Psimopoulos, Emmanouil
    Dalarna University, School of Technology and Business Studies, Energy Technology. Uppsala universitet, Fasta tillståndets fysik.
    Widén, Joakim
    Uppsala universitet, Fasta tillståndets fysik.
    Demand Side Management Using PV, Heat Pumps and Batteries: Effects on Community and Building Level2017In: Proceedings of the 33rd European Photovoltaic Solar Energy Conference, 2017Conference paper (Refereed)
    Abstract [en]

    This study examines how the energy management optimization on household level affects the maximum power flow in a community of houses and the contribution to load smoothening in the community. A detailed model of a single-family house with exhaust air heat pump and photovoltaic system is used in combination with high-resolution weather, electricity use and hot water use data. All five houses in the community are identical but the occupancy of the residents and their use of electric appliances and hot water differ. Results show no reduction of the maximum power delivered to the grid if the houses are operated to optimize the individual self-consumption and self-sufficiency. The highest aggregated power from the grid for the whole community occurred when the heat pumps were controlled by the PV electricity production but without any battery storage. This case also resulted in least smoothing of the aggregated household loads in the community. The conclusion of the study is that energy optimization for individual households in a community do not have to result in a reduction of the aggregated load and power production.

  • 2.
    Psimopoulos, Emmanouil
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. Uppsala universitet.
    Leppin, Lorenz
    Luthander, Rasmus
    Uppsala universitet, Fasta tillståndets fysik.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Control algorithms for PV and Heat Pump system using thermal and electrical storage2016In: Proceedings of the 11th ISES EuroSun 2016 International Conference on Solar Energy for Buildings and Industry, Palma de Mallorca, Spain, 11-14 October 2016, International Solar Energy Society , 2016Conference paper (Other academic)
    Abstract [en]

    In this study a detailed model of a single-family house with an exhaust air heat pump and photovoltaic system is developed in the simulation software TRNSYS. The model is used to evaluate three control algorithms using thermal and electrical storage in terms of final energy, solar fraction, self-consumption and seasonal performance factor. The algorithms are tested and compared with respect to energetic improvement for 1) use of the heat pump plus storage tank for domestic hot water and space heating, 2) use of the electrical storage in batteries and 3) use of both electrical and thermal storage. Results show the highest increase of self-consumption to 50.5%, solar fraction to 40.6% and final energy decrease to 6923 kWh by implementing the third algorithm in a system with 9.36 kW PV capacity and battery storage of 10.8 kWh. The use of electrical energy storage has higher positive impact compared to the thermal storage with the settings and component sizes used. The combined use of thermal storage and batteries leads to final energy savings that are nearly the same as the combined savings of thermal storage and batteries separately, showing that they are mostly independent of one another for the settings of this study.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf