du.sePublications
Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bales, Chris
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Betak, Jan
    Broum, Michal
    Chèze, David
    Cuvillier, Guillaume
    Haberl, Robert
    Hafner, Bernd
    Haller, Michel
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Weidinger, Alexander
    Optimized solar and heat pump systems, components and dimensioning: Deliverable 7.3 - MacSheep - New Materials and Control for a next generation of compact combined Solar and heat pump systems with boosted energetic and exergetic performance2015Report (Other (popular science, discussion, etc.))
    Abstract [en]

    This report describes the optimised solar and heat pump systems developed in the MacSheepproject as well as the simulation results for these systems. Four systems have been developed by four different development groups, each with one private company participating. The development groups have chosen different types of systems as well as different target loads for their systems, which give a wide coverage of the potential markets. The aim of the project was to achieve a 25% performance increase compared to state of the art systems, while being cost-competitive compared to the state of the art.Two reference state of the art solar and heat pump systems have been defined, modelled,and simulated to derive benchmark electricity demands and SPF values for the boundary conditions that were defined for the MacSheep project. The reference systems usedtheground (boreholes) orair as a heat source for the heat pump. The chosen boundary conditions were the climates of Zurich and Carcassone, arealistic DHW load,and two buildings, one representing a modern low energy building (SFH45) and one representing an existing building (SFH100). These reference systems and boundary conditions were defined within the first year of the project, and are used throughout the project.New components were developed for the MacSheepsolar and heat pump systems and these developments are reported in the reportsof work packages 3 –6. Component models have been programmed and validated with laboratory measurements.In this report, simulation results for the four MacSheep systems arecompared to the relevant reference system in order to quantify the expected performance increase. These simulations include the component models with their validated parameters and performance obtained from phase 3 of the project.In addition, the costs of the systemswere estimated. The key performance indicator for the final system developments was defined as a figure for electric savings (25%) compared to the state of the art at competitive (i.e. comparable) cost. Therefore, cost-savings that were achieved for some of the components that were developed were allowed to be compensated by increased cost for other components or increased collector areasin order to show the project's achievements in the light of the defined key performance indicator.At present, the updated simulations show electric savings of 17%, 24%, 26%, and 30%, respectively, for the different developments and the different target heat loads.Threeof these systems will be built and tested during 2015,using the whole system test method that was further developed within the MacSheep project (see report D2.3 for more details). The results from these tests will give benchmark energy used of these systems both for the test sequence itself but also on an annual base. In addition, the simulation models described in this report will be verified against the measurements and then used for annual simulations for otherboundary conditionsthan the once that are represented in the test sequence.

  • 2.
    Bales, Chris
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Betak, Jan
    Broum, Michal
    Chèze, David
    CEA INES.
    Cuvillier, Guillaume
    Haberl, Robert
    Institut für Solartechnik SPF Hochschule für Technik HSR.
    Haller, Michel Y.
    Institut für Solartechnik SPF Hochschule für Technik HSR.
    Hamp, Quirin
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Weidinger, Alexander
    Final report on storage developments in WP - Deliverable 5.4: MacSheep - New Materials and Control for a next generation of compact combined Solar and heat pump systems with boosted energetic and exergetic performance2015Report (Other (popular science, discussion, etc.))
  • 3. Cheeze, David
    et al.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Haller, Y. Michel
    Hamp, Quirin
    Matuska, Tomas
    Sourek, Borivoj
    Mojic, Igor
    Persson, Tomas
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Report on prototype system’s energetic  performance and financial competitiveness - Deliverable 8.3 : MacSheep - New Materials and Control for a next generation of compact combined Solar and heat pump systems with boosted energetic and exergetic performance2016Report (Other (popular science, discussion, etc.))
  • 4. Chèze, David
    et al.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Betak, Jan
    Broum, Michal
    Heier, Johan
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Heinz, Andreas
    Franz, Hengel
    Hamp, Quirin
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Final report on Control strategies, fault detection and on-line diagnosis in WP6 - Deliverable 6.4: MacSheep -New Materials and Control for a next generation of compact combined Solar and heat pump systems with boosted energetic and exergetic performance2015Report (Other (popular science, discussion, etc.))
    Abstract [en]

    The main objective of this work package was to investigate generic control strategies, generic fault-detection and on-line diagnosis algorithms that may apply to the developed prototypes of solar and heatpump systems within MacSheep. The results should lead toimproved reliability and/orincreased energy savings for the end-userthrough new controller features. The use of DHW consumption forecast was identified as a promising control strategy and a simple yet reasonably effective algorithm to get the water tapping behaviourof the userwas developed. Viessmannimplemented the ideas of this approach in an ICT solution for their controller to provide statistical tapping informationto the user who can then set the period when hot waterthatis expected to be used. The operationalstrategy based on DHW consumptionforecast for one hour was not implemented since the potential gains are small (~2%) and there is ahigh user discomfort risk in the case of an inaccurate forecastPrevious studies have shown that solar overheating of the building led to gas savings with solar gas combisystems. Using a similar strategy on the MacSheep reference system did not lead to significant savings, due to strong interactions between space and DHW heating and a higher share of HP operation time for DHW charging of the store, which has a lower efficiency.Another smart control strategy was investigated forvariable electricity pricesusing overheating of the building and/or the DHW volume of the store.The main conclusion of the study is that the combination of the two algorithms led to cost savings for the Austria (Graz) and France (Chambery) with both theSFH45 and SFH100 buildings.Since only the share related to user consumption varies during the day while the grid and transmission costs are usually constant, thecost savings were small, far below 1%.Among the proposed fault detection algorithms for solar and heat pump systems, detection of wrongly connected tubes in the solar collector loop was found interesting by Viesmmann and Regulus. It was implemented and tested in their respective prototype controller. Regulus also implemented the detection of wrong order phase connections in its heat pump prototype as well as threshold tests on abnormal temperature and pressure evolution.

  • 5.
    Gustafsson, Marcus
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Dipasquale, C.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Bellini, A.
    Fedrizzi, R.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Ochs, F.
    Sié, M.
    Holmberg, S.
    Economic and environmental analysis of energy renovation packages for European office buildings2017In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 148, p. 155-165Article in journal (Refereed)
    Abstract [en]

    A large share of the buildings in Europe are old and in need of renovation, both in terms of functional repairs and energy efficiency. While many studies have addressed energy renovation of buildings, they rarely combine economic and environmental life cycle analyses, particularly for office buildings. The present paper investigates the economic feasibility and environmental impact of energy renovation packages for European office buildings. The renovation packages, including windows, envelope insulation, heating, cooling and ventilation systems and solar photovoltaics (PV), were evaluated in terms of life cycle cost (LCC) and life cycle assessment (LCA) through dynamic simulation for different European climates. Compared to a purely functional renovation, the studied renovation packages resulted in up to 77% lower energy costs, 19% lower total annualized costs, 79% lower climate change impact, 89% lower non-renewable energy use, 66% lower particulate matter formation and 76% lower freshwater eutrophication impact over a period of 30 years. The lowest total costs and environmental impact, in all of the studied climates, were seen for the buildings with the lowest heating demand. Solar PV panels covering part of the electricity demand could further reduce the environmental impact and, at least in southern Europe, even reduce the total costs. © 2017 Elsevier B.V.

  • 6.
    Gustafsson, Marcus
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Fedrizzi, Roberto
    Dipasquale, Chiara
    Bellini, Alessandro
    Ochs, Fabian
    Univeristy of Innsbruck.
    Dermentzis, Georgios
    Univeristy of Innsbruck.
    Performance of Studied Systemic Renovation Packages – Office Buildings2016Report (Other academic)
  • 7.
    Heier, Johan
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Lorenz, Klaus
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    SOHOT: Solvärme för hotell2014Report (Other academic)
    Abstract [sv]

    Vid dimensionering av ett solvärmesystem av den typ som diskuteras i rapporten är varmvattenförbrukningen avgörande för systemets storlek. Litteraturstudien visar dock att varmvattenförbrukningen varierar kraftigt mellan olika typer av hotell samt vilken beläggningsgrad dessa har. För ett normalt ”medel”-hotell kan varmvattenförbrukningen uppskattas till 70 liter vid 60 grader per person och dag. För ett enklare hotell (typ vandrarhem) är förbrukningen ungefär hälften och för ett lyxhotell dubbelt så stor (35 respektive 140 liter per person och dag). Den högsta förbrukningen äger rum under två toppar, en på morgonen och en på kvällen. Under en av dessa toppar används ca 18-30 % av dygnets varmvatten under en timme. Beläggningsgraden är typiskt som högst sommartid och lägre vintertid, men beror förstås på hotellets målgrupp.

     

    Med detta som utgångspunkt har simuleringar för Stockholm och Malaga utförts i Polysun, där tre systemstorlekar samt två kvalitetsklasser av solfångare har använts. Resultaten visar att det går att nå en solandel på 50-75 % av tappvattenlasten i Stockholm och 60-90 % av tappvattenlasten för Malaga. Tack vare den högre solinstrålningen på Malaga kan systemet dimensioneras hälften så stort där. En känslighetsanalys över tappvattenlasten, där samma tappvattenlast som tidigare fast med jämn fördelning över årets månader används, visar att ett system i Nordiskt klimat får en lägre solandel medan systemet i Malaga inte påverkas lika mycket. Samma system i Malaga är alltså mindre känsligt för förändringar i tappvattenlastprofilen.

     

    Aktörsanalysen visar att det finns ett flertal företag i Dalaregionen som kan tänkas vara lämpliga att ingå i en projektgrupp med syfte att ta fram och utveckla en prototyp för konceptet solvärme till hotell. För att välja ut lämpliga samarbetspartners är det en rekommendation att kontakta Teknikdalen i Borlänge. En närmare diskussion med Teknikdalen kan ge en tydligare bild av vilka typer av aktörer som krävs för projektet samt även hur finansieringen kan lösas. Något som bör undersökas vidare är möjligheten till finansiering för ett demonstrationsprojekt, t.ex. lokalt i anknytning till Teknikdalen. En annan möjlig finansiering som verkar vara på gång är en utlysning relaterad till demonstrationsprojekt utomlands. Utlysningen är en enligt kontakt med Teknikdalen en fortsättning på Demomiljö (Sida/Tillväxtverket) dock finns inga detaljer tillgängliga i dagsläget.

  • 8.
    Heinz, Andreas
    et al.
    Institute of Thermal Engineering Graz University of Technology.
    Hengel, Franz
    Institute of Thermal Engineering Graz University of Technology.
    Mojic, Igor
    Institut für Solartechnik SPF Hochschule für Technik HSR.
    Haller, Michel Y.
    Institut für Solartechnik SPF Hochschule für Technik HSR.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Matuska, Tomas
    Czech Technical University in Prague, Faculty of Mechanical Engineering.
    Sedlar, Jan
    Czech Technical University in Prague, Faculty of Mechanical Engineering.
    Petrak, Jiri
    Czech Technical University in Prague, Faculty of Mechanical Engineering.
    Final report on heat pump developments in WP 4 - MacSheep Deliverable 4.4: MacSheep -New Materials and Control for a next generation of compact combined Solar and heat pump systems with boosted energetic and exergetic performance2015Report (Other (popular science, discussion, etc.))
  • 9.
    Poppi, Stefano
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Solar heat pump systems for heating applications: Analysis of system performance and possible solutions for improving system performance2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Solar heat pump systems (SHPs) are systems that combine solar energy and heat pumps. SHPs have been investigated for several decades and have been proven to increase the share of renewable energy and reduce electric energy demand in residential heating applications. Many solar thermal heat pump systems have become market-available in recent years; however these systems are still not widely employed in the residential sector. This is due mainly to the high initial costs (investment and installation costs) of solar thermal heat pump systems, which limits their cost-effectiveness. Enhancing cost-effectiveness of solar thermal heat pump systems is necessary for a more effective and broader market penetration.

    In this thesis, solar thermal and photovoltaic systems combined with heat pumps for heating applications are treated. The overall aims of the thesis are to: 1) investigate techno-economics of SHPs and 2) investigate possible solutions for improving system performance of a reference solar thermal and heat pump system for residential heating applications.

    In the first part of the thesis, the influence of climatic boundary conditions on economic performance of SHPs has been investigated by means of: a) an economic comparison of SHPs found in the relevant literature and b) system simulations of the reference solar thermal heat pump system.

    In the second part of the thesis, potential solutions for improving system performance of the reference solar thermal heat pump system with limited change in system’ costs are investigated. A systematic approach was used for investigating cost-effectiveness of the system improvements in the reference system.

    Based on results of the cost-effectiveness analysis, some of the investigated system improvements were chosen for being included in the design of a novel solar thermal and air source heat pump system concept. The novel system was designed for a house standard with relatively high operating temperatures (55°C/45°C) in the space heating distribution system and for high space heating demand (123 kWh/m2·year). Finally, the thesis ends with a cost-effectiveness analysis of the novel system.

  • 10.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. Department of Energy Technology, KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Influence of hydraulics and control of thermal storage in solar assisted heat pump combisystems2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 48, p. 946-955Article in journal (Refereed)
    Abstract [en]

    This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

  • 11.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Techno-economic analysis of a novel solar thermal and air-source heat pump system2016Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    This paper presents a techno-economic analysis of a novel solar thermal and air source heat pump system. The system was designed for relatively high operating temperatures in the space heating circuit and included the use of a heat pump with vapor injection cycle and vacuum insulation on the storage tank. The system model was validated against measurements in laboratory and simulated in TRNSYS 17. Annual simulations were performed for the combination of two climates (Carcassonne and Zurich) and two house standards (SFH45 and SFH100) and the best results were achieved for the boundary conditions the system was designed for. For those conditions (Zurich and SFH100), the novel system showed potential for being cost-effective compared to state of art solar and heat pump system. The “additional investment limit”, i.e. the maximum extra investment cost for the novel system in comparison to a state of art benchmark system that gives a break even result for a period of 10 years, varied between 827 € and 2482 € depending on electricity price. The results of a sensitivity analysis showed that variations in electricity price affected the additional investment limit far more than the other economic parameters

  • 12.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Haller, Michel Y.
    University of Applied Sciences HSR, Switzerland.
    Heinz, Andreas
    Institute of Thermal Engineering, Graz University of Technology.
    Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 162, p. 1062-1073Article in journal (Refereed)
    Abstract [en]

    Solar thermal and heat pump combisystems are used to produce domestic hot water (DHW) and space heating (SH) in dwellings. Many systems are available on the market. For an impartial comparison, a definite level of thermal comfort should be defined and ensured in all systems. This work studied the influence of component size on electricity demand for a state of the art solar thermal and heat pump system. A systematic series of parametric studies was carried out by using TRNSYS to show the impact of climate, load and size of main components as well as heat source for the heat pump. Penalty functions were used to ensure that all variations provided the same comfort requirements. Two reference systems were defined and modelled based on products on the market, one with ambient air and the other with borehole as heat source for the heat pump. The results show that changes in collector area from 5 to 15 m2 result in a decrease in system electricity of between 305 and 552 kW h/year. Changes in heat exchanger size for DHW preparation were shown to give nearly as large changes in electricity use due to the fact that the set temperature in the store was changed to give the same thermal comfort in all cases. Decrease in heat pump size was shown to give a decrease in electricity use for the ASHP in the building with larger heat demand while it increased or had only a small change for other boundary conditions. Heat pump losses were shown to be an important factor highlighting the importance of modelling this factor explicitly

  • 13.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Heinz, Andreas
    Hengel, Franz
    Cheze, David
    Mojic, Igor
    Cialani, Catia
    Dalarna University, School of Technology and Business Studies, Economics.
    Analysis of system improvements in solar thermal and air source heat pump combisystems2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 173, p. 606-623Article in journal (Refereed)
    Abstract [en]

    A solar thermal and heat pump combisystem is one of many system alternatives on the market for supplying domestic hot water (DHW) and space heating (SH) in dwellings. In this study a reference solar thermal and air source heat pump combisystem was defined and modelled based on products available on the market. Based on the results of an extensive literature survey, several system variations were investigated to show the influence of heat pump cycle, thermal storage and system integration on the use of electricity for two houses in the climates of Zurich and Carcassonne. A singular economic cash flow analysis was carried out and the “additional investment limit” of each system variation was determined for a range of economic boundary conditions. This is the maximum extra investment cost for the system variant compared to the reference system that will give a break even result for a 10 year period. The results show that variations in electricity price affects the additional investment limit far more than the other economic parameters. Several of the variants show potential for achieving a cost benefit, but the potential varies a lot depending on load and climate boundary conditions. For all variants, the biggest difference in electricity savings was found for Zurich rather than in Carcassonne, which is explained by the larger heating load. However, in three cases the largest savings were for the SFH45 house despite the fact that the annual electricity use of the system is much lower than that for the SFH100 house, 3581 kW h/year compared to 8340 kW h/year. This was attributed to the fact that, in these cases, the operating level of the space heating circuit played a significant role, the SFH45 house being supplied with a 35/30 °C heating system while the SFH100 was supplied with a 55/45 °C heating system.

  • 14.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology. Department of Energy Technology, KTH, Stockholm.
    Schubert, Verena
    AEE – Institute for Sustainable Technologies, Feldgasse19, 8200 Gleisdorf, Austria.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Weidinger, Alexander
    Simulation study of cascade heat pump for solar combisystems2014In: ISES Conference Proceedings EuroSun 2014, International Solar Energy Society (ISES) , 2014Conference paper (Other academic)
    Abstract [en]

    This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.

  • 15.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Sommerfeldt, N.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Madani, H.
    Lundqvist, P.
    Techno-economic review of solar heat pump systems for residential heating applications2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 81, p. 22-32Article in journal (Refereed)
    Abstract [en]

    Solar heat pump systems (SHPs) have been investigated for several decades and have been proven to increase the share of renewable energy and reduce electric energy demand in residential heating applications. Many review articles have been published on the subject, however literature discussing the techno-economics of different solar technologies (thermal, photovoltaic and hybrid thermal/photovoltaic) in combination with heat pumps is lacking, and thus to directly compare the merits of different SHPs is not an easy task. The objectives of this study are: a) review the different system boundaries and the main performance indicators used for assessing energetic and economic performances; b) review techno-economic studies in the literature and identify which studies give enough information and are compatible enough for making an economic inter-comparison; c) present an economic inter-comparison based on the identified systems. The results show that there is a lack of studies including an economic assessment of solar photovoltaic and heat pump systems. Additionally, there are no consistent boundaries or approaches to the study structures, making comparisons between systems difficult. In conclusion, a standardized or broadly accepted definition of technical and economic performance for SHPs is needed. Despite this, the study has shown that there are clear trends for decreasing payback times for SHPs, both solar thermal (ST) and photovoltaic (PV), with decreasing heating degree-days and with increasing solar resource.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf