Dalarna University's logo and link to the university's website

du.sePublications
Change search
Refine search result
12 1 - 50 of 64
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Joel Håkan
    et al.
    GKN Aerospace Engine Systems, Trollhätten, SE-46181, Sweden; Department of Engineering Science, University West, Trollhätten, SE-46186, Sweden.
    Raza, Shahzad
    Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden.
    Eliasson, Anders
    Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden.
    Surreddi, Kumar Babu
    Chalmers University of Technology, Gothenburg.
    Solidification of Alloy 718, ATI 718Plus® and Waspaloy2014In: 8th International Symposium on Superalloy 718 and Derivatives 2014, 2014, p. 181-192Conference paper (Refereed)
    Abstract [en]

    Alloy 718, ATI 718Plus® and Waspaloy have been investigated in terms of what their respective solidification process reveals. Differential thermal analysis was used to approach the task together with secondary electron and back scattered electron detectors equipped with an energy dispersive X-ray spectroscopy detector. These experimental methods were used to construct pseudo binary phase diagrams that could aid in explaining solidification as well as liquation mechanisms in processes such as welding and casting. Furthermore, it was seen that Waspaloy has the smallest solidification range, followed by Alloy 718, and finally ATI 718Plus® possessing the largest solidification interval in comparison.

  • 2.
    Donnadieu, Patricia
    et al.
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Pohlmann, Carsten
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Blandin, Jean-Jacques
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien; Chalmers University of Technology, Gothenburg.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Deformation at ambient and high temperature of in situ Laves phases-ferrite composites2014In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 15, no 3Article in journal (Refereed)
    Abstract [en]

    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ∼50 nm to ∼150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.

  • 3.
    Gyhlesten Back, Jessica
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Microstructure analysis of martensitic low alloy carbon steel samples subjected to deformation dilatometry2019In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 157, article id 109926Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 4. Habainy, J.
    et al.
    Iyengar, S.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Lee, Y.
    Dai, Y.
    Formation of oxide layers on tungsten at low oxygen partial pressures2018In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 506, no SI, p. 26-34Article in journal (Refereed)
    Abstract [en]

    This work focuses on the oxidation of tungsten in inert gas atmospheres containing oxygen and moisture. It is particularly relevant for the European Spallation Source where the tungsten target is cooled by purified helium gas and the 5 MW proton beam can raise the maximum target temperature beyond the threshold for oxidation. Tungsten discs were oxidized isothermally at 400° to 900 °C for 2 h in pure helium and helium mixed with oxygen and water vapor, with varying partial pressures up to 500 Pa. Tungsten was oxidized even with a small amount of oxygen (≤5 ppm) present in industrially pure helium. Non-isothermal oxidation of tungsten foils was carried out in water vapor (∼100 Pa), in situ in an environmental scanning electron microscope. On specimens oxidized in inert gas containing water vapor (2 h, pH2O" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">pH2O ∼790 Pa), Auger electron spectroscopy studies confirmed the presence of a thin oxide layer (40 nm) at 400 °C. At 500 °C the oxide layer was 10 times thicker. A dark, thin and adherent oxide layer was observed below 600 °C. Above this temperature, the growth rate increased substantially and the oxide layer was greenish, thick and porous. Oxide layers with varying stoichiometry were observed, ranging from WO3 at the surface to WO2 at the metal-oxide interface. For comparison, oxidation of tungsten alloysin He-5%O2 was studied. The implications of this work on the design and operation of the helium loop for cooling the target are discussed.

  • 5. Habainy, J.
    et al.
    Lee, Y.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Prosvetov, A.
    Simon, P.
    Iyengar, S.
    Dai, Y.
    Tomut, M.
    Study of heavy ion beam induced damage in tungsten for high power target applications2019In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 439, p. 7-16Article in journal (Refereed)
    Abstract [en]

    The spallation material at ESS is pure tungsten, which is cooled by gaseous helium flow. To study the behaviour of tungsten under dynamic beam conditions at ESS, pure tungsten specimens have been irradiated at the M3-beamline of the UNILAC facility at GSI Helmholtz Centre for Heavy Ion Research. Tungsten specimens of two thicknesses, 26 μm and 3 mm, were exposed to pulsed uranium and gold ion beams for fluences up to 7.5 · 1013 ions·cm−2 at 4.8 MeV/nucleon. Nanoindentation tests were performed on the cross section of the irradiated 3 mm sample, and microhardness was measured on the top surface. The measured data are compared with the calculated damage values, and a correlation between the radiation induced damage and the observed mechanical property is presented. Thermal diffusivities of foil samples irradiated up to four different fluences were measured with a Laser Flash Apparatus (LFA). The observed changes in the mechanical and thermal properties of irradiated tungsten were used to estimate the changes of operational temperature and mechanical stresses in the ESS target material with the progress of radiation damage, using coupled thermal and mechanical simulations. From the pulsed beam induced dynamic oscillations of thin tungsten specimens, information on fatigue properties of tungsten under irradiation was drawn. In addition to pure tungsten, oxidised tungsten samples were irradiated. This is to investigate the stability of the adhesive oxide layer under pulsed beam conditions, which would be formed due to oxygen impurities in the helium cooling loop. The irradiated oxide scale was examined using Auger Electron Spectroscopy (AES) and Scanning Electron Microscopy (SEM). 

  • 6. Heinrichs Lindgren, J.
    et al.
    Mikado, H.
    Donzel-Gargand, O.
    Surreddi, Kumar Babu
    Dalarna University, School of Information and Engineering, Materials Technology.
    Wiklund, U.
    Kawamura, S.
    Jacobson, S.
    Exploring the tribochemical wear and material transfer caused by Cu15Zn alloys on shearing tools2024In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 542-543, article id 205274Article in journal (Refereed)
    Abstract [en]

    Cemented carbide tools are extensively used in the zipper industry, including shearing of a pre-formed Cu15Zn wire into individual zipper elements. Although the work material is significantly softer than the tool, wear is the life limiting factor for the tools and is considered to be of tribochemical nature. So far it has not been explained, however, it is known that the wear rate of uncoated, as well as CrC and CrN coated, cemented carbide increases dramatically when Zn is omitted from the Cu alloy. In this paper, worn tool surfaces, including any transferred material, were studied to investigate the tribochemical wear mechanism in detail. Material transfer occurred onto all tool surfaces. Cu and Zn were separated on the sub-micron scale, and preferential transfer of one of the constituents was observed. This is reflected in the outermost surface of the sheared element, which shows a homogeneous composition elsewhere. Oxidation was observed of all tool surfaces, which indicates elements of oxidative wear. Further, any Zn transferred to the tool surfaces was oxidized. Thus, it is suggested that the presence of Zn reduces the oxygen available and consequently reduces the oxidation rate of the tool surfaces, leading to the protective effect previously observed. © 2024 The Authors

    Download full text (pdf)
    fulltext
  • 7.
    Hoier, Philipp
    et al.
    Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Klement, Uta
    Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Tool wear by dissolution during machining of alloy 718 and Waspaloy: a comparative study using diffusion couples2020In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 106, no 3-4, p. 1431-1440Article in journal (Refereed)
    Abstract [en]

    The wear of metal cutting tools is known to take place by the combined and simultaneous effects of several wear mechanisms. Knowledge of the relative contribution of the individual wear mechanisms is required to understand and predict the tool wear during cutting different workpiece materials and alloys. It has been shown previously that machining two heat resistant superalloys, alloy 718 and Waspaloy, leads to distinctively different tool wears. Even though the subject has been addressed in various studies, there are still open questions regarding the underlying reasons for the differing tool wear rates. In particular, the relative contributions of diffusion/dissolution when machining the two alloys have not been addressed so far. Therefore, a qualitative comparison of the chemical interaction between the tool material and the two superalloys was made by using diffusion couple tests. The aim was to mimic the high temperatures and intimate contact between workpiece and tool material at the tool rake and flank faces during cutting under controlled and static conditions. The obtained results suggest that it is unlikely that differences in flank wear rate when machining the two superalloys are caused by significantly varying magnitudes of tool atoms dissolving into the respective workpiece. Analysis of the tool/superalloy interfaces in the diffusion couples revealed diffusion-affected zones of similar size for both tested superalloys. Increasing test temperature led to enhanced interdiffusion which suggests an increase in tool wear by diffusion/dissolution for higher cutting temperature. For alloy 718, the higher test temperature also led to depletion of carbon together with formation of tungsten within the tool in close vicinity to the interface with the superalloy.

    Download full text (pdf)
    fulltext
  • 8.
    Jayamani, Jayaraj
    et al.
    Dalarna University, School of Information and Engineering, Materials Technology.
    Elo, Robin
    Uppsala University.
    Surreddi, Kumar Babu
    Dalarna University, School of Information and Engineering, Materials Technology.
    Olsson, Mikael
    Dalarna University, School of Information and Engineering, Materials Technology.
    Electrochemical and passivation behavior of a corrosion-resistant WC-Ni(W) cemented carbide in synthetic mine water2023In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 114, article id 106227Article in journal (Refereed)
    Abstract [en]

    Two different grades, WC-20 vol.% Ni and WC-20 vol.% Co cemented carbides, respectively were systematically investigated concerning their microstructure, binder composition, and corrosion behavior. SEM-EBSD analysis verified that both grades have similar WC grain sizes (0.9–1.1 μm). AES analysis confirmed that the binder phase of the respective grade is an alloy of Ni-W and Co-W and that the concentration of W in the Ni- and Co-binder is 21 and 10 at. %, respectively. In synthetic mine water (SMW), the EIS behavior of WC-Ni(W) at the open circuit potential (OCP) conditions was studied for different exposure periods (up to 120 h). The EIS data fitting estimates low capacitance and high charge transfer resistance (Rct) values, which indicate that the passive film formed on WC-Ni(W) is thin and exhibits high corrosion resistance. At the OCP and potentiostatic-passive conditions, SEM investigations confirm the uncorroded microstructure of the WC-Ni(W). The AR-XPS studies confirmed the formation of an extremely thin (0.25 nm) WO3 passive film is responsible for the high corrosion resistance of WC-Ni(W), at OCP conditions. However, above the transpassive potential, the microstructure instability of WC-Ni(W) was observed, i.e., corroded morphology of both WC grains and Ni(W) binder. The electrochemical parameters, Rct, corrosion current density, and charge density values, confirmed that the WC-Ni(W) is a far better alternative than the WC-Co(W) for application in SMW.

    Download full text (pdf)
    fulltext
  • 9.
    Khoshkhoo, Mohsen Samadi
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Thomas, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Grain and crystallite size evaluation of cryomilled pure copper2011In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 509, p. S343-S347Article in journal (Refereed)
  • 10. Lin, Z.
    et al.
    Surreddi, Kumar Babu
    Dalarna University, School of Information and Engineering, Materials Technology.
    Hulme, C.
    Dadbakhsh, S.
    Rashid, A.
    Influence of Electron Beam Powder Bed Fusion Process Parameters on Transformation Temperatures and Pseudoelasticity of Shape Memory Nickel Titanium2023In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 25, no 12, article id 2201818Article in journal (Refereed)
    Abstract [en]

    Electron beam powder bed fusion (PBF-EB) is used to manufacture dense nickel titanium parts using various parameter sets, including the beam current, scan speed, and postcooling condition. The density of manufactured NiTi parts is investigated in relation to the linear energy input. The results imply that the part density increases with increasing linear energy density to over 98% of the bulk density. With a constant energy input, a combination of low power and low scan speed leads to denser parts. This is attributed to lower electrostatic repulsive forces from lower number density of the impacting electrons. After manufacturing, the densest parts with distinct parameter sets are categorized into three groups: 1) high power with high scan speed and vacuum slow cooling, 2) low power with low scan speed and vacuum slow cooling, and 3) low power with low scan speed and medium cooling rate in helium gas. Among these, a faster cooling rate suppresses phase transformation temperatures, while vacuum cooling combinations do not affect the phase transformation temperatures significantly. Herein, all the printed parts exhibit almost 8% pseudoelasticity regardless of the process parameters, while the parts cooled in helium have a higher energy dissipation efficiency (1 − η), which implies faster damping of oscillations. © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH.

    Download full text (pdf)
    fulltext
  • 11.
    Malakizadi, Amir
    et al.
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Cedergren, Stefan
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Surreddi, Kumar Babu
    Nyborg, Lars
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    A methodology to evaluate the machinability of Alloy 718 by means of FE simulation2013In: International Conference on Advanced Manufacturing Engineering and Technologies. Stockholm: NEWTECH, 2013, p. 95-106Conference paper (Refereed)
  • 12.
    Mukhopadhyay, N K
    et al.
    a Centre of Advanced Study, Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Srivastava, Vikas C
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Yadav, T P
    Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Strain-induced structural transformation of single-phase Al–Cu–Fe icosahedral quasicrystal during mechanical milling2011In: Philosophical Magazine, ISSN 1478-6435, Vol. 91, no 19-21, p. 2482-2490Article in journal (Refereed)
  • 13. Nath, Deo
    et al.
    Tiwari, S. N.
    Surreddi, Kumar Babu
    Banaras Hindu University, India.
    Structure and properties of Al–Ni PM composites2004In: Powder Metallurgy, ISSN 0032-5899, E-ISSN 1743-2901, Vol. 47, no 3, p. 247-252Article in journal (Refereed)
    Abstract [en]

    Al–Ni powder mixtures containing 2, 4, 6 and 8 wt-% nickel were compacted at 125, 250, 375 and 500 MPa and sintered at 620, 630 and 640°C in a nitrogen atmosphere. The sintered density, sintered hardness and strength of composites thus produced were determined as a function of compaction pressure and sintering temperature. Wear rates of the composites were evaluated as a function of applied load and sliding velocity. Optical and scanning electron microscopy were used to reveal the morphology of powder and microstructures of green and sintered compacts. X-ray diffraction studies of the sintered compacts were made to confirm the phases formed on sintering. Sintered density, sintered hardness and strength increased with an increase in compaction pressure and nickel content. X-ray diffraction indicated the presence of Al3Ni phase in the sintered alloy. The wear rate of the sintered Al–Ni PM composite was found to increase with increasing load and decrease with increasing nickel content.

  • 14.
    Nikolowski, K
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Das, Jayanta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stress-induced martensitic transformation in a Ti45Zr38Al17 cast rod2009In: Journal of Physics: Conference Series, ISSN 1742-6588, Vol. 144, no 1, p. 1-4Article in journal (Refereed)
  • 15.
    Olsson, Mikael
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Scratch testing of cemented carbides - Influence of Co binder phase and WC grain size on surface deformation and degradation mechanisms2018In: Proceedings of The 18th Nordic Symposium on Tribology - Nordtrib 2018 / [ed] Staffan Jacobson, Uppsala: Uppsala University, 2018Conference paper (Refereed)
    Abstract [en]

    In the present study, the microstructural response of some commercial cemented carbide grades during scratchinghas been analyzed and evaluated by a number of post-test characterization techniques. The influence of Co binder phase content and WC grain size on the deformation and degradation on a WC grain size scale and on a composite scaleare evaluated. The results clearly illustrate the complexity of deformation, degradation and wear of cemented carbide and the dynamics of the diamond stylus / cemented carbide contact during the scratching event. For all cementedcarbide grades the microstructure has a strong impact on the observed degradation mechanisms and the resistance to deformation and degradation was found to increase with decreasing Co content and decreasing WC grain size.

    Download full text (pdf)
    fulltext
  • 16.
    Olsson, Mikael
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Thin hard CVD and PVD coatings and their potential in steel wire drawing applications2018In: Proceedings of The 18th Nordic Symposium on Tribology - NORDTRIB 2018 / [ed] Staffan Jacobson, Uppsala: Uppsala University, 2018Conference paper (Refereed)
    Abstract [en]

    In the present work, the potential of using thin hard CVD and PVD coatings in order to improve the performance of cemented carbide steel wire drawing nibs is evaluated. Coating materials include some state-of-the-art CVD and PVD coatings and pre- and post-coating treatments were used to improve the surface topography of the coated functional surfaces. The tribological performance of the coatings has been evaluated by sliding wear tests and wire drawing experiments under well controlled conditions. Post-test characterization of the coated nibs using 3D optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy illustrates the pros and cons of the two deposition techniques but also that the coatings have a potential to improve the performance of cemented carbide nibs in steel wire drawing applications.

    Download full text (pdf)
    fulltext
  • 17.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien, Chalmers University of Technology, Gothenburg.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Vaughan, Gavin
    European Synchrotron Radiation Facilities (ESRF), BP 220, Grenoble 38043, France.
    Eckert, Jürgen
    Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass2012In: Materials, Vol. 5, no 1, p. 1-11Article in journal (Refereed)
  • 18.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Klauss, Hansjörg J
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    Chalmers University of Technology, Gothenburg.
    Löber, Lukas
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Chaubey, Anil Kumar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment2014In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 590, p. 153-160Article in journal (Refereed)
  • 19.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Murty, B S
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai – 600036, India.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots2009In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 513, p. 279-285Article in journal (Refereed)
  • 20.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien; Chalmers University of Technology, Gothenburg.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sordelet, D J
    Advanced Materials Technology Group, Caterpillar Inc.Mossville, USA.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Powder metallurgy of high-strength Al90.4Y4.4Ni4.3Co0.9 gas-atomized powder2012In: 13th International Conference on Aluminum Alloys (ICAA13), Springer, Cham , 2012, p. 1017-1022Conference paper (Refereed)
    Abstract [en]

    Al90.4Y4.4Ni4.3Co0.9 gas-atomized powder was hot pressed (HP) to produce highly dense bulk samples through combined devitrification and consolidation. The microstructure of the as-atomized powder is a mixture of amorphous phase with nanocrystalline fcc Al, whereas the consolidated samples consists of fcc Al and a series of intermetallic phases with or without residual amorphous phase depending on the hot pressing temperature (673 or 723 K). The HP samples exhibit a remarkable high strength of ~ 925 MPa (HP at 673 K) and ~ 820 MPa (HP at 723 K) combined with a plastic strain ranging between 14 and 30%. The reduction in strength for the sample HP at 723 K is linked to the complete crystallization of the powder with no residual amorphous phase.

  • 21. Scudino, S.
    et al.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading2017In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 708, p. 722-727Article in journal (Refereed)
    Abstract [en]

    The effect of the shear bands generated by cold rolling on the tensile ductility and fracture behavior of the Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass (BMG) is analyzed. The results reveal significant changes in the fracture behavior of the cold-rolled material with respect to the as-cast BMG. Fracture in the cold-rolled glass occurs along the pre-existing shear bands forming an angle of 45° with the loading direction. In addition, the fracture morphology shows a regular vein pattern oriented along the shear direction, which indicates that a considerable shear stress is active on the fracture plane. This is in contrast to the fracture behavior of the as-cast glass, where the normal stress plays a significant role. Here, the fracture angle is 55° and the fracture surface is characterized by the conventional irregular pattern of radiating ridges. Finally, work-hardening was observed in the cold-rolled BMG even in the absence of visible shear band intersection. Possible alternative mechanisms for determining this behavior are discussed. © 2017 Elsevier B.V.

  • 22.
    Scudino, S.
    et al.
    IFW Dresden, Inst Complex Mat, Solidificat Proc & Complex Struct, Helmholtzstr 20, D-01069 Dresden, Germany..
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Wang, G.
    Shanghai Univ, Lab Microstruct, Shanghai 200444, Peoples R China..
    Liu, G.
    Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.;Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R China..
    Effect of stress concentration on plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under compressive loading2016In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 179, p. 202-205Article in journal (Refereed)
    Abstract [en]

    The influence of different sources of stress concentration on the plastic deformation of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass during room temperature compression tests is evaluated. Stress concentration introduced by sample geometry has a significant effect on the mechanical properties: in contrast to the specimen with square cross-section, which shows negligible plastic deformation, a substantial improvement in the plasticity can be achieved for the sample with round cross-section. Simulations of the stress distribution during the compression tests reveal that the stress concentration at the interface corners is responsible for the early fracture of the sample with square cross-section. Additionally, stress concentration during compression tests in the samples with square cross-section can be significantly reduced, and plastic deformation can be enhanced, by removing the interface corners as well as by reducing the friction arising between loading platens and specimen. 

  • 23.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Prashanth, Konda Gokuldoss
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Al-based metal matrix composites reinforced with nanocrystalline Al-Ti-Ni particles2010In: Journal of Physics: Conference Series, ISSN 1742-6588, no 1Article in journal (Refereed)
  • 24.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Donnadieu, Patricia
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Nikolowski, K
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Microstructure and mechanical properties of Laves phase-reinforced Fe–Zr–Cr alloys2009In: Intermetallics, ISSN 0966-9795, Vol. 17, no 7, p. 532-539Article in journal (Refereed)
  • 25.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Jerliu, Bujar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Ductile bulk metallic glasses produced through designed heterogeneities2011In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 65, no 9, p. 815-818Article in journal (Refereed)
  • 26.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Jerliu, Bujar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Effect of cold rolling on compressive and tensile mechanical properties of Zr52. 5Ti5Cu18Ni14.5Al10 bulk metallic glass2011In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 509Article in journal (Refereed)
  • 27.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Prashanth, Konda Gokuldoss
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Bartusch, B
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Murty, Budaraju Srinivasa
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai – 600036, India.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy2009In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 57, no 6, p. 2029-2039Article in journal (Refereed)
  • 28.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties2009In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 57, no 15, p. 4529-4538Article in journal (Refereed)
  • 29.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical alloying and milling of Al–Mg alloys2009In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 483, no 1-2, p. 2-7Article in journal (Refereed)
  • 30.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Solid-state processing of Al-Mg alloys2009In: Journal of Physics: Conference Series, ISSN 1742-6588, Vol. 144, no 1Article in journal (Refereed)
  • 31.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Vaughan, Gavin
    European Synchrotron Radiation Facilities (ESRF), BP 220, Grenoble 38043, France.
    Yavari, A R
    LTCPM (CNRS umr 5614), Institut National Polytechnique de Grenoble, BP 75, 38402 St‐Martin‐d'Hères Campus, France.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    In‐situ X‐ray diffraction of mechanically milled β‐Al3Mg2 powders2008In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 2, no 6, p. 272-274Article in journal (Refereed)
  • 32.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Structure and mechanical properties of Al–Mg alloys produced by copper mold casting2010In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 504, p. S483-S486Article in journal (Refereed)
  • 33.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical properties of cold‐rolled Zr60Ti5Ag5Cu12.5Ni10Al7.5 metallic glass2010In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 207, no 5, p. 1118-1121Article in journal (Refereed)
  • 34.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    Improved Room Temperature Plasticity of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass by Channel‐Die Compression2010In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 12, no 11, p. 1123-1126Article in journal (Refereed)
  • 35.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Nguyen, H V
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Gemming, Thomas
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kim, Ji Soon
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Vierke, Jens
    Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin Germany.
    Wollgarten, Markus
    Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    High-strength Al87Ni8La5 bulk alloy produced by spark plasma sintering of gas atomized powders2009In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 24, no 9, p. 2909-2916Article in journal (Refereed)
  • 36.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Sager, S
    FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287, Darmstadt, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kim, Ji Soon
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Löser, W
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites2008In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 43, no 13, p. 4518-4526Article in journal (Refereed)
  • 37.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Wang, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Enhanced plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass by the optimization of frictional boundary restraints2010In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 62, no 10, p. 750-753Article in journal (Refereed)
  • 38.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Venkataraman, Shankar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Das, Jayanta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Consolidation and mechanical properties of ball milled Zr50Cu50 glassy ribbons2009In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 483, no 1-2, p. 227-230Article in journal (Refereed)
  • 39.
    Sina, Hossein
    et al.
    Materials Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden.
    Surreddi, Kumar Babu
    Materials Engineering, Lund University.
    Iyengar, Srinivasan
    Materials Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden.
    Phase evolution during the reactive sintering of ternary Al–Ni–Ti powder compacts2016In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 661, p. 294-305Article in journal (Refereed)
  • 40. Singh, N.
    et al.
    Ummethala, Raghunandan
    Surreddi, Kumar Babu
    Dalarna University, School of Information and Engineering, Materials Technology.
    Jayamani, Jayaraj
    Dalarna University, School of Information and Engineering, Materials Technology.
    Sokkalingam, Rathinavelu
    Rajput, Monika
    Chatterjee, Kaushik
    Prashanth, K.G.
    Effect of TiB2 addition on the mechanical and biological response of spark plasma sintered Ti6Al7Nb matrix composites2022In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 924, p. 166502-166502, article id 166502Article in journal (Refereed)
  • 41.
    Sokkalingam, Rathinavelu
    et al.
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India.
    Tarraste, Marek
    Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Mikli, Valdek
    Department of Materials and Environmental Technology, Tallinn University of Technology, 19086 Tallinn, Estonia.
    Muthupandi, Veerappan
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India.
    Sivaprasad, Katakam
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India.
    Prashanth, Konda Gokuldoss
    Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia.
    Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy2020In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 35, no 21, p. 2835-2847Article in journal (Refereed)
    Abstract [en]

    Al0.1CoCrFeNi high-entropy alloy (HEA) was synthesized successfully from elemental powders by mechanical alloying (MA) and subsequent consolidation by spark plasma sintering (SPS). The alloying behavior, microstructure, and mechanical properties of the HEA were assessed using X-ray diffraction, electron microscope, hardness, and compression tests. MA of the elemental powders for 8 h has resulted in a two-phased microstructure: α-fcc and β-bcc phases. On the other hand, the consolidated bulk Al0.1CoCrFeNi-HEA sample reveals the presence of α-fcc and Cr23C6 phases. The metastable β-bcc transforms into a stable α-fcc during the SPS process due to the supply of thermal energy. The hardness of the consolidated bulk HEA samples is found to be 370 ± 50 HV0.5, and the yield and ultimate compressive strengths are found to be 1420 and 1600 MPa, respectively. Such high strength in the Al0.1CoCrFeNi HEA is attributed to the grain refinement strengthening.

    Download full text (pdf)
    fulltext
  • 42.
    Sokkalingam, Rathinavelu
    et al.
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
    Tarraste, Marek
    Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Traksmaa, Rainer
    Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
    Muthupandi, Veerappan
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
    Sivaprasad, Katakam
    Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
    Prashanth, Konda Gokuldoss
    Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia Erich Schmid Institute of Materials Science, Leoben, Austria CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India.
    Microstructure and properties of in-situ high entropy alloy/tungsten carbide composites by mechanical alloying.2020In: Material Design & Processing Communications, ISSN 2577-6576, Vol. n/a, no n/a, p. 1-9Article in journal (Refereed)
    Abstract [en]

    Abstract Al0.1CoCrFeNi-high entropy alloy (HEA) /tungsten carbide (WC)metal matrix composite was successfully prepared by mechanical alloying and subsequent spark plasma sintering. The different volume fraction of WC was distributed evenly by varying the powder milling parameters from gentle milling (~1.37% WC) and intensive milling (~14.27% WC). Sintering of gently milled powder has resulted in the evolution of three-phased microstructure: α-fcc and Cr- rich σ-phase with some WC-phase distributed in the HEA matrix. On the other hand, the sintering of intensively milled powder has resulted in a two-phased microstructure: α-fcc phase with even and dense distribution of WC-phased particles without any Cr- rich σ-phase. The absence of σ-phase is attributed to a complete alloying of Cr in the HEA matrix. Microhardness analysis and compression test indicate that a ~ 13% difference in WC fraction has resulted in an enhancement in hardness (46%) and compressive strength (~ 500 MPa).

  • 43.
    Song, KaiKai
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Gargarella, Peter
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass2011In: Intermetallics, ISSN 0966-9795, Vol. 19, no 10, p. 1394-1398Article in journal (Refereed)
  • 44.
    Srivastava, Vikas C
    et al.
    Metal Extraction & Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, Hans Werner
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Microstructural characteristics of spray formed and heat treated Al–(Y, La)–Ni–Co system2013In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 578, p. 471-480Article in journal (Refereed)
  • 45.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Microstructure and mechanical properties of partially amorphous Al85Y8Ni5Co2 plate produced by spray forming2010In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 527, no 10-11, p. 2747-2758Article in journal (Refereed)
  • 46.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Novel microstructural characteristics and properties of spray formed Al-RE-TM based alloys2009In: International conference on Spray forming 2009, 2009Conference paper (Refereed)
  • 47.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Spray forming of bulk Al85Y8Ni5Co2 with co-existing amorphous, nano-and micro-crystalline structures2009In: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 62, no 4-5, p. 331-335Article in journal (Refereed)
  • 48.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Formation of nanocrystalline matrix composite during spray forming of Al83La5Y5Ni5Co22009In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 40, no 2, p. 450-461Article in journal (Refereed)
  • 49. Surreddi, Kumar Babu
    et al.
    Bengtsson, Robin
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Nyborg, Lars
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    PM Biomaterials: Production of porous NiTi bulk shape memory alloy by starch consolidation and sintering of pre-alloyed Powder2013In: European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, The European Powder Metallurgy Association , 2013, Vol. 3, p. 271-276Conference paper (Refereed)
  • 50.
    Surreddi, Kumar Babu
    et al.
    Chalmers University of Technology, Gothenburg.
    Björkeborn, Karin
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Klement, Uta
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Effect of heat treatment on chip formation in a case hardening steel2013In: Journal of Materials and Chemical Engineering, ISSN 2310-063X, Vol. 1, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    In manufacturing industry, variations in machinability are regularly observed when producing the same part out of different material batches of a case hardening steel. Some batches result in variations in chip breakability which leads to a nonrobust production process with unforeseen stops of automatic machining process. The aim of the present study is to investigate the influence of the microstructure on chip formation in case hardening steel. Different microstructures were produced from the same batch of material by varying heat treatment. Chips were collected after machining at different feed rates and depths of cut. The cross sections of the chips have been analyzed with respect to overall deformation pattern, mean thickness, and degree of segmentation. Also, the influence of manganese sulfide on machinability has been investigated. The microstructural investigation of the chips has shown that there is a clear difference in the deformation behavior between a case hardening steel with larger and smaller pearlite nodular structure. Chips from the material with larger pearlite nodular size and lower amount of pro-eutectoid ferrite are by far more segmented as compared to chips from materials with smaller pearlite nodular size.

    Download full text (pdf)
    fulltext
12 1 - 50 of 64
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf