du.sePublications
Change search
Refine search result
12 1 - 50 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Joel Håkan
    et al.
    GKN Aerospace Engine Systems, Trollhätten, SE-46181, Sweden; Department of Engineering Science, University West, Trollhätten, SE-46186, Sweden.
    Raza, Shahzad
    Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden.
    Eliasson, Anders
    Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden.
    Surreddi, Kumar Babu
    Chalmers University of Technology, Gothenburg.
    Solidification of Alloy 718, ATI 718Plus® and Waspaloy2014In: 8th International Symposium on Superalloy 718 and Derivatives 2014, 2014, p. 181-192Conference paper (Refereed)
    Abstract [en]

    Alloy 718, ATI 718Plus® and Waspaloy have been investigated in terms of what their respective solidification process reveals. Differential thermal analysis was used to approach the task together with secondary electron and back scattered electron detectors equipped with an energy dispersive X-ray spectroscopy detector. These experimental methods were used to construct pseudo binary phase diagrams that could aid in explaining solidification as well as liquation mechanisms in processes such as welding and casting. Furthermore, it was seen that Waspaloy has the smallest solidification range, followed by Alloy 718, and finally ATI 718Plus® possessing the largest solidification interval in comparison.

  • 2.
    Donnadieu, Patricia
    et al.
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Pohlmann, Carsten
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Blandin, Jean-Jacques
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien; Chalmers University of Technology, Gothenburg.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Deformation at ambient and high temperature of in situ Laves phases-ferrite composites2014In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 15, no 3Article in journal (Refereed)
    Abstract [en]

    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ∼50 nm to ∼150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.

  • 3.
    Gyhlesten Back, Jessica
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Microstructure analysis of martensitic low alloy carbon steel samples subjected to deformation dilatometry2019In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 157, article id 109926Article in journal (Refereed)
  • 4. Habainy, J.
    et al.
    Iyengar, S.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Lee, Y.
    Dai, Y.
    Formation of oxide layers on tungsten at low oxygen partial pressures2018In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 506, no SI, p. 26-34Article in journal (Refereed)
    Abstract [en]

    This work focuses on the oxidation of tungsten in inert gas atmospheres containing oxygen and moisture. It is particularly relevant for the European Spallation Source where the tungsten target is cooled by purified helium gas and the 5 MW proton beam can raise the maximum target temperature beyond the threshold for oxidation. Tungsten discs were oxidized isothermally at 400° to 900 °C for 2 h in pure helium and helium mixed with oxygen and water vapor, with varying partial pressures up to 500 Pa. Tungsten was oxidized even with a small amount of oxygen (≤5 ppm) present in industrially pure helium. Non-isothermal oxidation of tungsten foils was carried out in water vapor (∼100 Pa), in situ in an environmental scanning electron microscope. On specimens oxidized in inert gas containing water vapor (2 h, pH2O" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">pH2O ∼790 Pa), Auger electron spectroscopy studies confirmed the presence of a thin oxide layer (40 nm) at 400 °C. At 500 °C the oxide layer was 10 times thicker. A dark, thin and adherent oxide layer was observed below 600 °C. Above this temperature, the growth rate increased substantially and the oxide layer was greenish, thick and porous. Oxide layers with varying stoichiometry were observed, ranging from WO3 at the surface to WO2 at the metal-oxide interface. For comparison, oxidation of tungsten alloysin He-5%O2 was studied. The implications of this work on the design and operation of the helium loop for cooling the target are discussed.

  • 5. Habainy, J.
    et al.
    Lee, Y.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Prosvetov, A.
    Simon, P.
    Iyengar, S.
    Dai, Y.
    Tomut, M.
    Study of heavy ion beam induced damage in tungsten for high power target applications2019In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 439, p. 7-16Article in journal (Refereed)
    Abstract [en]

    The spallation material at ESS is pure tungsten, which is cooled by gaseous helium flow. To study the behaviour of tungsten under dynamic beam conditions at ESS, pure tungsten specimens have been irradiated at the M3-beamline of the UNILAC facility at GSI Helmholtz Centre for Heavy Ion Research. Tungsten specimens of two thicknesses, 26 μm and 3 mm, were exposed to pulsed uranium and gold ion beams for fluences up to 7.5 · 1013 ions·cm−2 at 4.8 MeV/nucleon. Nanoindentation tests were performed on the cross section of the irradiated 3 mm sample, and microhardness was measured on the top surface. The measured data are compared with the calculated damage values, and a correlation between the radiation induced damage and the observed mechanical property is presented. Thermal diffusivities of foil samples irradiated up to four different fluences were measured with a Laser Flash Apparatus (LFA). The observed changes in the mechanical and thermal properties of irradiated tungsten were used to estimate the changes of operational temperature and mechanical stresses in the ESS target material with the progress of radiation damage, using coupled thermal and mechanical simulations. From the pulsed beam induced dynamic oscillations of thin tungsten specimens, information on fatigue properties of tungsten under irradiation was drawn. In addition to pure tungsten, oxidised tungsten samples were irradiated. This is to investigate the stability of the adhesive oxide layer under pulsed beam conditions, which would be formed due to oxygen impurities in the helium cooling loop. The irradiated oxide scale was examined using Auger Electron Spectroscopy (AES) and Scanning Electron Microscopy (SEM). 

  • 6.
    Hoier, Philipp
    et al.
    Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Klement, Uta
    Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Tool wear by dissolution during machining of alloy 718 and Waspaloy: a comparative study using diffusion couples2020In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 106, no 3-4, p. 1431-1440Article in journal (Refereed)
    Abstract [en]

    The wear of metal cutting tools is known to take place by the combined and simultaneous effects of several wear mechanisms. Knowledge of the relative contribution of the individual wear mechanisms is required to understand and predict the tool wear during cutting different workpiece materials and alloys. It has been shown previously that machining two heat resistant superalloys, alloy 718 and Waspaloy, leads to distinctively different tool wears. Even though the subject has been addressed in various studies, there are still open questions regarding the underlying reasons for the differing tool wear rates. In particular, the relative contributions of diffusion/dissolution when machining the two alloys have not been addressed so far. Therefore, a qualitative comparison of the chemical interaction between the tool material and the two superalloys was made by using diffusion couple tests. The aim was to mimic the high temperatures and intimate contact between workpiece and tool material at the tool rake and flank faces during cutting under controlled and static conditions. The obtained results suggest that it is unlikely that differences in flank wear rate when machining the two superalloys are caused by significantly varying magnitudes of tool atoms dissolving into the respective workpiece. Analysis of the tool/superalloy interfaces in the diffusion couples revealed diffusion-affected zones of similar size for both tested superalloys. Increasing test temperature led to enhanced interdiffusion which suggests an increase in tool wear by diffusion/dissolution for higher cutting temperature. For alloy 718, the higher test temperature also led to depletion of carbon together with formation of tungsten within the tool in close vicinity to the interface with the superalloy.

  • 7.
    Khoshkhoo, Mohsen Samadi
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Thomas, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Grain and crystallite size evaluation of cryomilled pure copper2011In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 509, p. S343-S347Article in journal (Refereed)
  • 8.
    Malakizadi, Amir
    et al.
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Cedergren, Stefan
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Surreddi, Kumar Babu
    Nyborg, Lars
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    A methodology to evaluate the machinability of Alloy 718 by means of FE simulation2013In: International Conference on Advanced Manufacturing Engineering and Technologies. Stockholm: NEWTECH, 2013, p. 95-106Conference paper (Refereed)
  • 9.
    Mukhopadhyay, N K
    et al.
    a Centre of Advanced Study, Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Srivastava, Vikas C
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Yadav, T P
    Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Strain-induced structural transformation of single-phase Al–Cu–Fe icosahedral quasicrystal during mechanical milling2011In: Philosophical Magazine, ISSN 1478-6435, Vol. 91, no 19-21, p. 2482-2490Article in journal (Refereed)
  • 10. Nath, Deo
    et al.
    Tiwari, S. N.
    Surreddi, Kumar Babu
    Banaras Hindu University, India.
    Structure and properties of Al–Ni PM composites2004In: Powder Metallurgy, ISSN 0032-5899, E-ISSN 1743-2901, Vol. 47, no 3, p. 247-252Article in journal (Refereed)
    Abstract [en]

    Al–Ni powder mixtures containing 2, 4, 6 and 8 wt-% nickel were compacted at 125, 250, 375 and 500 MPa and sintered at 620, 630 and 640°C in a nitrogen atmosphere. The sintered density, sintered hardness and strength of composites thus produced were determined as a function of compaction pressure and sintering temperature. Wear rates of the composites were evaluated as a function of applied load and sliding velocity. Optical and scanning electron microscopy were used to reveal the morphology of powder and microstructures of green and sintered compacts. X-ray diffraction studies of the sintered compacts were made to confirm the phases formed on sintering. Sintered density, sintered hardness and strength increased with an increase in compaction pressure and nickel content. X-ray diffraction indicated the presence of Al3Ni phase in the sintered alloy. The wear rate of the sintered Al–Ni PM composite was found to increase with increasing load and decrease with increasing nickel content.

  • 11.
    Nikolowski, K
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Das, Jayanta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stress-induced martensitic transformation in a Ti45Zr38Al17 cast rod2009In: Journal of Physics: Conference Series, ISSN 1742-6588, Vol. 144, no 1, p. 1-4Article in journal (Refereed)
  • 12.
    Olsson, Mikael
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Scratch testing of cemented carbides - Influence of Co binder phase and WC grain size on surface deformation and degradation mechanisms2018In: Proceedings of The 18th Nordic Symposium on Tribology - Nordtrib 2018 / [ed] Staffan Jacobson, Uppsala: Uppsala University, 2018Conference paper (Refereed)
    Abstract [en]

    In the present study, the microstructural response of some commercial cemented carbide grades during scratchinghas been analyzed and evaluated by a number of post-test characterization techniques. The influence of Co binder phase content and WC grain size on the deformation and degradation on a WC grain size scale and on a composite scaleare evaluated. The results clearly illustrate the complexity of deformation, degradation and wear of cemented carbide and the dynamics of the diamond stylus / cemented carbide contact during the scratching event. For all cementedcarbide grades the microstructure has a strong impact on the observed degradation mechanisms and the resistance to deformation and degradation was found to increase with decreasing Co content and decreasing WC grain size.

  • 13.
    Olsson, Mikael
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Thin hard CVD and PVD coatings and their potential in steel wire drawing applications2018In: Proceedings of The 18th Nordic Symposium on Tribology - NORDTRIB 2018 / [ed] Staffan Jacobson, Uppsala: Uppsala University, 2018Conference paper (Refereed)
    Abstract [en]

    In the present work, the potential of using thin hard CVD and PVD coatings in order to improve the performance of cemented carbide steel wire drawing nibs is evaluated. Coating materials include some state-of-the-art CVD and PVD coatings and pre- and post-coating treatments were used to improve the surface topography of the coated functional surfaces. The tribological performance of the coatings has been evaluated by sliding wear tests and wire drawing experiments under well controlled conditions. Post-test characterization of the coated nibs using 3D optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy illustrates the pros and cons of the two deposition techniques but also that the coatings have a potential to improve the performance of cemented carbide nibs in steel wire drawing applications.

  • 14.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien, Chalmers University of Technology, Gothenburg.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Vaughan, Gavin
    European Synchrotron Radiation Facilities (ESRF), BP 220, Grenoble 38043, France.
    Eckert, Jürgen
    Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass2012In: Materials, Vol. 5, no 1, p. 1-11Article in journal (Refereed)
  • 15.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Klauss, Hansjörg J
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    Chalmers University of Technology, Gothenburg.
    Löber, Lukas
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Chaubey, Anil Kumar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment2014In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 590, p. 153-160Article in journal (Refereed)
  • 16.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Murty, B S
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai – 600036, India.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots2009In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 513, p. 279-285Article in journal (Refereed)
  • 17.
    Prashanth, Konda Gokuldoss
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien; Chalmers University of Technology, Gothenburg.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sordelet, D J
    Advanced Materials Technology Group, Caterpillar Inc.Mossville, USA.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Powder metallurgy of high-strength Al90.4Y4.4Ni4.3Co0.9 gas-atomized powder2012In: 13th International Conference on Aluminum Alloys (ICAA13), Springer, Cham , 2012, p. 1017-1022Conference paper (Refereed)
    Abstract [en]

    Al90.4Y4.4Ni4.3Co0.9 gas-atomized powder was hot pressed (HP) to produce highly dense bulk samples through combined devitrification and consolidation. The microstructure of the as-atomized powder is a mixture of amorphous phase with nanocrystalline fcc Al, whereas the consolidated samples consists of fcc Al and a series of intermetallic phases with or without residual amorphous phase depending on the hot pressing temperature (673 or 723 K). The HP samples exhibit a remarkable high strength of ~ 925 MPa (HP at 673 K) and ~ 820 MPa (HP at 723 K) combined with a plastic strain ranging between 14 and 30%. The reduction in strength for the sample HP at 723 K is linked to the complete crystallization of the powder with no residual amorphous phase.

  • 18. Scudino, S.
    et al.
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading2017In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 708, p. 722-727Article in journal (Refereed)
    Abstract [en]

    The effect of the shear bands generated by cold rolling on the tensile ductility and fracture behavior of the Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass (BMG) is analyzed. The results reveal significant changes in the fracture behavior of the cold-rolled material with respect to the as-cast BMG. Fracture in the cold-rolled glass occurs along the pre-existing shear bands forming an angle of 45° with the loading direction. In addition, the fracture morphology shows a regular vein pattern oriented along the shear direction, which indicates that a considerable shear stress is active on the fracture plane. This is in contrast to the fracture behavior of the as-cast glass, where the normal stress plays a significant role. Here, the fracture angle is 55° and the fracture surface is characterized by the conventional irregular pattern of radiating ridges. Finally, work-hardening was observed in the cold-rolled BMG even in the absence of visible shear band intersection. Possible alternative mechanisms for determining this behavior are discussed. © 2017 Elsevier B.V.

  • 19.
    Scudino, S.
    et al.
    IFW Dresden, Inst Complex Mat, Solidificat Proc & Complex Struct, Helmholtzstr 20, D-01069 Dresden, Germany..
    Surreddi, Kumar Babu
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Wang, G.
    Shanghai Univ, Lab Microstruct, Shanghai 200444, Peoples R China..
    Liu, G.
    Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.;Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R China..
    Effect of stress concentration on plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under compressive loading2016In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 179, p. 202-205Article in journal (Refereed)
    Abstract [en]

    The influence of different sources of stress concentration on the plastic deformation of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass during room temperature compression tests is evaluated. Stress concentration introduced by sample geometry has a significant effect on the mechanical properties: in contrast to the specimen with square cross-section, which shows negligible plastic deformation, a substantial improvement in the plasticity can be achieved for the sample with round cross-section. Simulations of the stress distribution during the compression tests reveal that the stress concentration at the interface corners is responsible for the early fracture of the sample with square cross-section. Additionally, stress concentration during compression tests in the samples with square cross-section can be significantly reduced, and plastic deformation can be enhanced, by removing the interface corners as well as by reducing the friction arising between loading platens and specimen. 

  • 20.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Prashanth, Konda Gokuldoss
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Al-based metal matrix composites reinforced with nanocrystalline Al-Ti-Ni particles2010In: Journal of Physics: Conference Series, ISSN 1742-6588, no 1Article in journal (Refereed)
  • 21.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Donnadieu, Patricia
    Laboratoire SIMaP, CNRS—Université de Grenoble, F-38402 Saint Martin d’Hères, France.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Nikolowski, K
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Microstructure and mechanical properties of Laves phase-reinforced Fe–Zr–Cr alloys2009In: Intermetallics, ISSN 0966-9795, Vol. 17, no 7, p. 532-539Article in journal (Refereed)
  • 22.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Jerliu, Bujar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Ductile bulk metallic glasses produced through designed heterogeneities2011In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 65, no 9, p. 815-818Article in journal (Refereed)
  • 23.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Jerliu, Bujar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Effect of cold rolling on compressive and tensile mechanical properties of Zr52. 5Ti5Cu18Ni14.5Al10 bulk metallic glass2011In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 509Article in journal (Refereed)
  • 24.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Prashanth, Konda Gokuldoss
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Bartusch, B
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Murty, Budaraju Srinivasa
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai – 600036, India.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy2009In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 57, no 6, p. 2029-2039Article in journal (Refereed)
  • 25.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties2009In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 57, no 15, p. 4529-4538Article in journal (Refereed)
  • 26.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical alloying and milling of Al–Mg alloys2009In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 483, no 1-2, p. 2-7Article in journal (Refereed)
  • 27.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Solid-state processing of Al-Mg alloys2009In: Journal of Physics: Conference Series, ISSN 1742-6588, Vol. 144, no 1Article in journal (Refereed)
  • 28.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Vaughan, Gavin
    European Synchrotron Radiation Facilities (ESRF), BP 220, Grenoble 38043, France.
    Yavari, A R
    LTCPM (CNRS umr 5614), Institut National Polytechnique de Grenoble, BP 75, 38402 St‐Martin‐d'Hères Campus, France.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    In‐situ X‐ray diffraction of mechanically milled β‐Al3Mg2 powders2008In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 2, no 6, p. 272-274Article in journal (Refereed)
  • 29.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Ali, Fahad
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Structure and mechanical properties of Al–Mg alloys produced by copper mold casting2010In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 504, p. S483-S486Article in journal (Refereed)
  • 30.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Mechanical properties of cold‐rolled Zr60Ti5Ag5Cu12.5Ni10Al7.5 metallic glass2010In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 207, no 5, p. 1118-1121Article in journal (Refereed)
  • 31.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Khoshkhoo, Mohsen Samadi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Wang, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    Improved Room Temperature Plasticity of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass by Channel‐Die Compression2010In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 12, no 11, p. 1123-1126Article in journal (Refereed)
  • 32.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Nguyen, H V
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Liu, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Gemming, Thomas
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kim, Ji Soon
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Vierke, Jens
    Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin Germany.
    Wollgarten, Markus
    Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    High-strength Al87Ni8La5 bulk alloy produced by spark plasma sintering of gas atomized powders2009In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 24, no 9, p. 2909-2916Article in journal (Refereed)
  • 33.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Sager, S
    FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287, Darmstadt, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Kim, Ji Soon
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Löser, W
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites2008In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 43, no 13, p. 4518-4526Article in journal (Refereed)
  • 34.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Wang, Gang
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Enhanced plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass by the optimization of frictional boundary restraints2010In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 62, no 10, p. 750-753Article in journal (Refereed)
  • 35.
    Scudino, Sergio
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Venkataraman, Shankar
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Das, Jayanta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Consolidation and mechanical properties of ball milled Zr50Cu50 glassy ribbons2009In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 483, no 1-2, p. 227-230Article in journal (Refereed)
  • 36.
    Sina, Hossein
    et al.
    Materials Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden.
    Surreddi, Kumar Babu
    Materials Engineering, Lund University.
    Iyengar, Srinivasan
    Materials Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden.
    Phase evolution during the reactive sintering of ternary Al–Ni–Ti powder compacts2016In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 661, p. 294-305Article in journal (Refereed)
  • 37.
    Song, KaiKai
    et al.
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Pauly, Simon
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany; .
    Wang, Zhi
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Gargarella, Peter
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Kühn, Uta
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass2011In: Intermetallics, ISSN 0966-9795, Vol. 19, no 10, p. 1394-1398Article in journal (Refereed)
  • 38.
    Srivastava, Vikas C
    et al.
    Metal Extraction & Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, Hans Werner
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Microstructural characteristics of spray formed and heat treated Al–(Y, La)–Ni–Co system2013In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 578, p. 471-480Article in journal (Refereed)
  • 39.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Microstructure and mechanical properties of partially amorphous Al85Y8Ni5Co2 plate produced by spray forming2010In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 527, no 10-11, p. 2747-2758Article in journal (Refereed)
  • 40.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Novel microstructural characteristics and properties of spray formed Al-RE-TM based alloys2009In: International conference on Spray forming 2009, 2009Conference paper (Refereed)
  • 41.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Schowalter, Marco
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Rosenauer, Andreas
    Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Spray forming of bulk Al85Y8Ni5Co2 with co-existing amorphous, nano-and micro-crystalline structures2009In: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 62, no 4-5, p. 331-335Article in journal (Refereed)
  • 42.
    Srivastava, Vikas C
    et al.
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Surreddi, Kumar Babu
    IFW Dresden, Institut für Komplexe Materialien.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Schulz, Alwin
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Zoch, H-W
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Formation of nanocrystalline matrix composite during spray forming of Al83La5Y5Ni5Co22009In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 40, no 2, p. 450-461Article in journal (Refereed)
  • 43. Surreddi, Kumar Babu
    et al.
    Bengtsson, Robin
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Nyborg, Lars
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    PM Biomaterials: Production of porous NiTi bulk shape memory alloy by starch consolidation and sintering of pre-alloyed Powder2013In: European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, The European Powder Metallurgy Association , 2013, Vol. 3, p. 271-276Conference paper (Refereed)
  • 44.
    Surreddi, Kumar Babu
    et al.
    Chalmers University of Technology, Gothenburg.
    Björkeborn, Karin
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Klement, Uta
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden .
    Effect of heat treatment on chip formation in a case hardening steel2013In: Journal of Materials and Chemical Engineering, ISSN 2310-063X, Vol. 1, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    In manufacturing industry, variations in machinability are regularly observed when producing the same part out of different material batches of a case hardening steel. Some batches result in variations in chip breakability which leads to a nonrobust production process with unforeseen stops of automatic machining process. The aim of the present study is to investigate the influence of the microstructure on chip formation in case hardening steel. Different microstructures were produced from the same batch of material by varying heat treatment. Chips were collected after machining at different feed rates and depths of cut. The cross sections of the chips have been analyzed with respect to overall deformation pattern, mean thickness, and degree of segmentation. Also, the influence of manganese sulfide on machinability has been investigated. The microstructural investigation of the chips has shown that there is a clear difference in the deformation behavior between a case hardening steel with larger and smaller pearlite nodular structure. Chips from the material with larger pearlite nodular size and lower amount of pro-eutectoid ferrite are by far more segmented as compared to chips from materials with smaller pearlite nodular size.

  • 45.
    Surreddi, Kumar Babu
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Oikonomou, C.
    Uddeholms AB, SE-68385 Hagfors, Sweden..
    Karlsson, P.
    Orebro Univ, Dept Mech Engn, SE-70182 Orebro, Sweden..
    Olsson, Mikael
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Pejryd, L.
    Orebro Univ, Dept Mech Engn, SE-70182 Orebro, Sweden..
    In-situ micro-tensile testing of additive manufactured maraging steels in the SEM: Influence of build orientation, thickness and roughness on the resulting mechanical properties2018In: La Metallurgia Italiana, ISSN 0026-0843, no 3, p. 27-33Article in journal (Refereed)
    Abstract [en]

    Selective laser melting (SLM) is frequently used additive manufacturing technique capable of producing various complex parts including thin-wall sections. However the surface roughness is a limiting factor in thin sections produced by SLM process when strength is the main criterion. In this study, the influence of build orientation, thickness and roughness on the resulting mechanical properties of as-built test samples was investigated. Various thin sheets of EN 1.2709 maraging steel built in horizontal and vertical orientations produced by SLM were investigated using in-situ micro-tensile testing in a scanning electron microscope. The mechanical strength and deformation mechanisms were analyzed and explained based on thickness and build orientation. Increased ductility was observed in thicker samples as well as in the horizontal build samples. The results illustrate the potential of the in-situ test technique and aspects important to consider in design guidelines for thin AM structures.

  • 46.
    Surreddi, Kumar Babu
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Oikonomou, Christos
    Karlsson, Patrik
    Olsson, Mikael
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Pejryd, Lars
    In-situ Micro-tensile Testing of Additive Manufactured Maraging Steels in the SEM: Influence of Build Orientation, Thickness and Roughness on the Resulting Mechanical Properties2017In: Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition2017: Session 30: Mechanical Behaviour of AM Materials, 2017, article id Session 30Conference paper (Refereed)
    Abstract [en]

    Selective laser melting (SLM) is frequently used additive manufacturing technique capable of producing various complex parts including thin-wall sections. However the surface roughness is a limiting factor in thin sections produced by SLM process when strength is the main criterion. In this study, the influence of build orientation, thickness and roughness on the resulting mechanical properties of as-built test samples was investigated. Various thin sheets of EN 1.2709 maraging steel built in horizontal and vertical orientations produced by SLM were investigated using in-situ micro-tensile testing in a scanning electron microscope. The mechanical strength and deformation mechanisms were analyzed and explained based on thickness and build orientation. Increased ductility was observed in thicker samples as well as in the horizontal build samples. The results illustrate the potential of the in-situ test technique and aspects important to consider in design guidelines for thin AM structures.

  • 47.
    Surreddi, Kumar Babu
    et al.
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Olsson, Mikael
    Dalarna University, School of Technology and Business Studies, Materials Technology.
    Wear of cemented carbide nibs in steel wire drawing2018In: The 18th Nordic Symposium on Tribology – NORDTRIB 2018 / [ed] Prof. Staffan Jacobson, 2018Conference paper (Other academic)
    Abstract [en]

    The tribological interaction between a cemented carbide drawing die and a steel wire under lubricated wire drawing conditions has been characterized using 3D optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that wear of the cemented carbides mainly is located to three different wear zones, i) at the entrance of the reduction zone, ii) at the exit of the reduction zone/ entrance of the bearing zone and iii) at the exit of the bearing zone. In the first wear zone, wear of the cemented carbide occurs on a WC grain size level and is controlled by plastic deformation, cracking and fragmentation of individual WC grains. In the second wear zone, wear of the cemented carbide is controlled by chipping of small WC/Co composite fragments resulting in craters, ~ 10μm in diameter.

  • 48.
    Surreddi, Kumar Babu
    et al.
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Nikolowski, K
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Stoica, Mihai
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Gemming, T
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Nguyen, H V
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Kim, J S
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Vierke, J
    Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin Germany.
    Spark plasma sintering of gas atomized Al87Ni8La5 amorphous powder2009In: Journal of Physics: Conference Series, ISSN 1742-6588Article in journal (Refereed)
  • 49.
    Surreddi, Kumar Babu
    et al.
    IFW Dresden, Institut für Komplexe Materialien.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Mira
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Prashanth, Konda Gokuldoss
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sordelet, D J
    Advanced Materials Technology Group, Caterpillar Inc.Mossville, USA.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Crystallization behavior and consolidation of gas-atomized Al84Gd6Ni7Co3 glassy powder2010In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 491, no 1-2, p. 137-142Article in journal (Refereed)
  • 50.
    Surreddi, Kumar Babu
    et al.
    IFW Dresden, Institut für Komplexe Materialien.
    Srivastava, Vikas C
    National Metallurgical Laboratory, Jamshedpur-831 007, India.
    Scudino, Sergio
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Sakaliyska, Miroslava
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Uhlenwinkel, Volker
    Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany.
    Kim, Ji Soon
    Research Center for Machine Parts and Materials Processing, University of Ulsan, San 29, 680749 Ulsan Korea.
    Eckert, Jürgen
    IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany.
    Production of high-strength Al85Y8Ni5Co2 bulk alloy by spark plasma sintering2010In: Journal of Physics: Conference Series, ISSN 1742-6588, no 1Article in journal (Refereed)
12 1 - 50 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf