du.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fleyeh, Hasan
    et al.
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Yella, Siril
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Hansson, Karl
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Feature selection and bleach time modelling of paper pulp using tree based learners2016In: Web Information Systems Engineering – WISE 2016: 17th International Conference, Shanghai, China, November 8-10, 2016, Proceedings, Part I / [ed] Wojciech CellaryMohamed F. MokbelJianmin WangHua WangRui ZhouYanchun Zhang, China - Shanghai: Springer, 2016, Vol. 10042, p. 385-396Conference paper (Refereed)
    Abstract [en]

    Paper manufacturing is energy demanding and improvedmodelling of the pulp bleach process is the main non-invasive means ofreducing energy costs. In this paper, time it takes to bleach paper pulpto desired brightness is examined. The model currently used is analysedand benchmarked against two machine learning models (Random Forestand TreeBoost). Results suggests that the current model can be super-seded by the machine learning models and it does not use the optimalcompact subset of features. Despite the differences between the machinelearning models, a feature ranking correlation has been observed for thenew models. One novel, yet unused, feature that both machine learningmodels found to be important is the concentration of bleach agent.

  • 2.
    Jomaa, Diala
    et al.
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Yella, Siril
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Predicting automatic trigger speed for vehicle-activated signs2018In: Journal of Intelligent Systems, ISSN 0334-1860, E-ISSN 2191-026XArticle in journal (Refereed)
    Abstract [en]

    Vehicle-activated signs (VAS) are speed-warning signs activated by radar when the driver speed exceeds a pre-set threshold, i.e. the trigger speed. The trigger speed is often set relative to the speed limit and is displayed for all types of vehicles. It is our opinion that having a static setting for the trigger speed may be inappropriate, given that traffic and road conditions are dynamic in nature. Further, different vehicle classes (mainly cars and trucks) behave differently, so a uniform trigger speed of such signs may be inappropriate to warn different types of vehicles. The current study aims to investigate an automatic VAS, i.e. one that could warn vehicle users with an appropriate trigger speed by taking into account vehicle types and road conditions. We therefore investigated different vehicle classes, their speeds, and the time of day to be able to conclude whether different trigger speeds of VAS are essential or not. The current study is entirely data driven; data are initially presented to a self-organising map (SOM) to be able to partition the data into different clusters, i.e. vehicle classes. Speed, time of day, and length of vehicle were supplied as inputs to the SOM. Further, the 85th percentile speed for the next hour is predicted using appropriate prediction models. Adaptive neuro-fuzzy inference systems and random forest (RF) were chosen for speed prediction; the mean speed, traffic flow, and standard deviation of vehicle speeds were supplied as inputs for the prediction models. The results achieved in this work show that RF is a reliable model in terms of accuracy and efficiency, and can be used in finding appropriate trigger speeds for an automatic VAS. 

  • 3.
    Jomaa, Diala
    et al.
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Yella, Siril
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Dougherty, Mark
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    A comparative study between vehicle activated signs and speed indicator devices2017In: Transportation Research Procedia, ISSN 2324-9935, E-ISSN 2352-1465, Vol. 22, p. 115-123Article in journal (Refereed)
    Abstract [en]

    Vehicle activated signs and Speed indicator devices are safety signs used to warn and remind drivers that they are exceeding the speed limit on a particular road segment. This article has analysed and compared such signs with the aim of reporting the most suitable sign for relevant situations. Vehicle speeds were recorded at different test sites and the effects of the signs were studied by analyzing the mean and standard deviation. Preliminary results from the work indicate that both types of signs have variable effects on the mean and standard deviation of speed on a given road segment. Speed indicator devices were relatively more effective than vehicle activated signs on local roads; in contrast their effectivity was only comparable when tested on highways.

  • 4. Meszyński, Sebastian
    et al.
    Nyberg, Roger G.
    Dalarna University, School of Technology and Business Studies, Information Systems.
    Yella, Siril
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Agent-based modelling and simulation of insulin-glucose subsystem2016In: Proceedings of the Fifth International Conference on Intelligent Systems and Applications, 2016, p. 63-68Conference paper (Refereed)
    Abstract [en]

    Mathematical analytical modeling and computer simulation of the physiological system is a complex problem with great number of variables and equations. The objective of this research is to describe the insulin-glucose subsystem using multi-agent modeling based on intelligence agents. Such an approach makes the modeling process easier and clearer to understand; moreover, new agents can be added or removed more easily to any investigations. The Stolwijk-Hardy mathematical model is used in two ways firstly by simulating the analytical model and secondly by dividing up the same model into several agents in a multiagent system. In the proposed approach a multi-agent system was used to build a model for glycemic homeostasis. Agents were used to represent the selected elements of the human body that play an active part in this process. The experiments conducted show that the multi-agent model has good temporal stability with the implemented behaviors, and good reproducibility and stability of the results. It has also shown that no matter what the order of communication between agents, the value of the result of the simulation was not affected. The results obtained from using the framework of multi-agent system actions were consistent with the results obtained with insulin-glucose models using analytical modeling.

  • 5.
    Yella, Siril
    et al.
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Nyberg, Roger G.
    Dalarna University, School of Technology and Business Studies, Information Systems.
    Assessing the quality and reliability of visual estimates in determining plant cover on railway embankments2016In: Web Information Systems Engineering – WISE 2016: 17th International Conference, Shanghai, China, November 8-10, 2016, Proceedings, Part II / [ed] Wojciech Cellary, Mohamed F. Mokbel, Jianmin Wang, Hua Wang, Rui Zhou, Yanchun Zhang, 2016, Vol. 10042, p. 404-410Conference paper (Refereed)
    Abstract [en]

    This study has investigated the quality and reliability of manual assessments on railway embankments within the domain of railway maintenance. Manually inspecting vegetation on railway embankments is slow and time consuming. Maintenance personnel also require extensive knowledge of the plant species, ecology and bio-diversity to be able to recommend appropriate maintenance action. The overall objective of the study is to investigate the reliable nature of manual inspection routines in favour an automatic approach. Visual estimates of plant cover reported by domain experts’ have been studied on two separate railway sections in Sweden. The first study investigated visual estimates using aerial foliar cover (AFC) and sub-plot frequency (SF) methods to assess the plant cover on a railway section in Oxberg, Alvdalsbanan, Sweden. The second study investigated visual estimates using aerial canopy cover method on a railway section outside Vetlanda, Sweden. Visual estimates of the domain experts were recorded and analysis-of-variance (ANOVA) tests on the mean estimates were investigated to see whether if there were disagreements between the raters’. ICC(2, 1) was used to study the differences between the estimates. Results achieved in this work indicate statistically significant differences in the mean estimates of cover (p < 0.05) reported by the domain experts on both the occasions.

  • 6.
    Yella, Siril
    et al.
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Nyberg, Roger G
    Dalarna University, School of Technology and Business Studies, Information Systems.
    Gupta, Narendra K.
    Edinburgh Napier University.
    Dougherty, Mark
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Reliability of manual assessments in determining the types of vegetation on railway tracks2015In: Web Information Systems Engineering – WISE 2015: 16th International Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part II / [ed] Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y., Springer, 2015, Vol. 9149, p. 391-399Conference paper (Refereed)
    Abstract [en]

    Current day vegetation assessments within railway maintenance are (to a large extent) carried out manually. This study has investigated the reliability of such manual assessments by taking three non-domain experts into account. Thirty-five track images under different conditions were acquired for the purpose. For each image, the raters’ were asked to estimate the cover of woody plants, herbs and grass separately (in %) using methods such as aerial canopy cover, aerial foliar cover and sub-plot frequency. Visual estimates of raters’ were recorded and analysis-of-variance tests on the mean cover estimates were investigated to see whether if there were disagreements between the raters’.  In tra-correl ation coefficient was used to study the differences between the estimates. Results achieved in this work revealed that seven out of the nine analysis-of-variance tests conducted in this study have demonstrated significant difference in the mean estimates of cover (p < 0.05).

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf