du.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Fedderwitz, F.
    et al.
    Björklund, N.
    Anngren, R.
    Lindström, Anders
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology.
    Nordlander, G.
    Can methyl jasmonate treatment of conifer seedlings be used as a tool to stop height growth in nursery forest trees?2019In: New forests, ISSN 0169-4286, E-ISSN 1573-5095Article in journal (Refereed)
  • 2. Malmqvist, C.
    et al.
    Wallin, Elisabeth
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Lindström, Anders
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology.
    Säll, H.
    Differences in bud burst timing and bud freezing tolerance among interior and coastal seed sources of Douglas fir2017In: Trees, ISSN 0931-1890, E-ISSN 1432-2285, Vol. 31, no 6, p. 1987-1998Article in journal (Refereed)
    Abstract [en]

    The need for species that will grow well through ongoing climate change has increased the interest in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] in Sweden. One of the most common problems seen in plantations of Douglas fir seedlings is damage caused by late spring frost, known to be highly correlated with the timing of bud burst. The objective of this study was to investigate spring-related bud development under Nordic conditions of seven Douglas fir provenances and to compare data with a local provenance of Norway spruce (Picea abies (L.) Karst). Results from a field trial and a greenhouse-based study were compared. The interior Douglas fir provenances exhibited an earlier bud burst than coastal provenances, both in the greenhouse and in the field trial. When comparing differences within the groups of interior and coastal Douglas fir provenances, no differences could be found. The local Norway spruce, only grown in the greenhouse, showed an intermediate bud development profile similar to the interior Douglas fir provenance Three Valley. We therefore suggest that Three Valley could be planted at the same locations as the investigated local provenance of Norway spruce in mid-Sweden. To avoid spring frost damage the Douglas fir seedlings need to be frozen stored and planted late in spring. Planting under shelterwood can also help protect the seedlings from spring frost damages. As similar results for bud development patterns of Douglas fir and Norway spruce provenances were obtained from the greenhouse and field trials, greenhouse tests could facilitate selection of provenances.

  • 3.
    Wallin, Elisabeth
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. SLU.
    Gräns, Daniel
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology. SLU.
    Jacobs, Douglass F
    Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA..
    Lindström, Anders
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology. SLU.
    Verhoef, Nathalie
    NSure, Binnenhaven 5, NL-6700 AA Wageningen, Netherlands..
    Short-day photoperiods affect expression of genes related to dormancy and freezing tolerance in Norway spruce seedlings2017In: Annals of Forest Science, ISSN 1286-4560, E-ISSN 1297-966X, Vol. 74, no 3, article id 59Article in journal (Refereed)
    Abstract [en]

    Key message: Gene expression analysis showed that prolonged short day (SD) treatment deepened dormancy and stimulated development of freezing tolerance of Picea abies seedlings. Prolonged SD treatment also caused later appearance of visible buds in autumn, reduced risks for reflushing, and promoted earlier spring bud break.

    Context: Short day (SD) treatment of seedlings is a common practice in boreal forest tree nurseries to regulate shoot growth and prepare the seedlings for autumn planting or frozen storage. Aims The aim of this study was to examine responses of Norway spruce (Picea abies (L.) Karst.) to a range of SD treatments of different length and evaluate gene expression related to dormancy induction and development of freezing tolerance.

    Methods: The seedlings were SD treated for 11 h a day during 7, 14, 21, or 28 days. Molecular tests were performed, and the expression profiles of dormancy and freezing tolerance- related genes were analyzed as well as determination of shoot growth, bud set, bud size, reflushing, dry matter content, and timing of spring bud break.

    Results: The 7-day SD treatment was as effective as longer SD treatments in terminating apical shoot growth. However, short (7 days) SD treatment resulted in later activation of dormancy-related genes and of genes related to freezing tolerance compared to the longer treatments which had an impact on seedling phenology.

    Conclusion: Gene expression analysis indicated an effective stimulus of dormancy-related genes when the SD treatment is prolonged for at least 1-2 weeks after shoot elongation has terminated and that seedlings thereafter are exposed to ambient outdoor climate conditions.

  • 4.
    Wallin, Elisabeth
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. SLU.
    Gräns, Daniel
    Stattin, Eva
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology.
    Verhoef, Nathalie
    Mikusiński, Grzegorz
    Lindström, Anders
    Dalarna University, School of Technology and Business Studies, Forest and Wood Technology.
    Evaluating methods for storability assessment and determination of vitality status of container grown Norway spruce transplants after frozen storage2019In: Scandinavian Journal of Forest Research, ISSN 0282-7581, E-ISSN 1651-1891, Vol. 34, no 6, p. 417-426Article in journal (Refereed)
    Abstract [en]

    Autumn sown small seedlings for later transplanting into large containers have been introduced in Swedish forest tree nurseries. Containerized transplants of Norway spruce (Picea abies (L.) Karst.) from three Swedish nurseries were frozen stored during the autumn of 2014 to find out storability and post-storage vitality. Seedling storability was determined by measuring electrolyte leakage after freezing shoots to −25°C (SELdiff−25), by measurements of dry matter content (DMC) of seedling shoots and by the commercial molecular test ColdNSure™. Vitality of seedlings after storage was determined by measuring the leakage of electrolytes from shoots (SEL), and seedlings were also tested in regrowth tests. All three methods for storability assessment gave similar predictions, except in one case where DMC showed “not storable” for successfully stored seedlings. Our results indicated that young transplants can be successfully short term stored before reaching the target levels for safe long-term storage of conventional seedlings. Early storage of young transplants resulted in low post-storage survival and vitality expressed as root growth capacity and shoot electrolyte leakage (SEL). A prolonged duration in storage generally resulted in lower survival as well as lower root growth capacity and higher levels of SEL, especially for seedlings stored at earlier dates. 

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf