du.sePublications
Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bales, Chris
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Streicher, W.
    Letz, T.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Dimensioning of Solar Combisystems2003In: Solar heating systems for houses / [ed] Weiss, W., London: James & James , 2003Chapter in book (Other academic)
  • 2. Kovács, P.
    et al.
    Pettersson, U.
    Persson, M.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Fischer, S.
    Improving the accuracy in performance prediction for new collector designs2011Conference paper (Refereed)
  • 3. Lennermo, Gunnar
    et al.
    Persson, Tomas
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Pettersson, Ulrik
    Johansson, Mathias
    Underlag för utökad besiktning av bio- och solvärmesystem: Formulär med analyshjälp2011Report (Other academic)
    Abstract [sv]

    Det är svårt att på ett genomarbetat sätt, kontrollera en solvärmeanläggning som är i drift och det blir svårare när solvärmesystemet skall samverka med en biobränsleanläggning, som har sina speciella egenheter. Det enklaste och, som det kan tyckas, bästa sättet att kontrollera om en solvärmeanläggning fungerar, är att beräkna utifrån en värmemängdsmätare, som förhoppningsvis finns i anläggningen, hur mycket energi per m2 aktiv area som solfångaren har producerat per år. Om produktionen ligger mellan 300 – 350 kWh/m2 så är det bra. Det är dock så att en solvärmeanläggning borde kunna producera betydligt mer värme om den bara ges lite bättre förutsättning eller att den faktiskt kan ge mindre, men ändå uppfylla de krav som ställdes. Det behöver inte nödvändigtvis vara antalet producerade solfångar-kWh värme som är högt utan det viktigaste kanske är att antalet inbesparade kWh biobränsle är många. För att kunna få ett grepp om hur en solvärmeanläggning fungerar i sitt sammanhang så bör det totala systemet redovisas framför allt med avseende på: -Värmedistributionssystemets uppbyggnad. Var och när finns kallt vatten som ska värmas samt hur mycket. -Energi- och effektnivåer för olika delar av systemet och fram för allt under sommaren -Vilka pannor och bränslen som används, framför allt med betoning på reglerbarhet Solvärmekretsen, som inte är speciellt annorlunda utformad än i andra lite större solvärmeanläggningar ges i den här rapporten relativt stort utrymme, eftersom den samlade kompetensen bland de som gör besiktningar och kontroller inte är så hög. De delar som berörs mest är: -Trycket i solvärmeanläggningen med avseende på expansionskärlets förtryck, systemets uppfyllnadstryck och driftsfunktioner -Flödet i anläggningen som inriktar sig på luftmedryckning, flödesfördelning och vanliga flödeshastigheter -Solfångarnas energi- och värmeeffektproduktion Huvuddelen av underlagsmaterialet bör ha samlats in före besöket, genom att försöka få tag på: -Förstudier för solvärme- och pannanläggning -Förfrågningsunderlag för i första hand solvärmeanläggningen -Driftstatistik -Data på hur det totala systemet ser ut. Dessa data bör bearbetas innan besöket på plats vilket skall inkludera en genomgång av driftsansvarig vilket kompletteras med en guidad tur genom anläggningen. Besöket bör också vara förberett hos driftsansvariga så att stegar för att komma åt solfångarna finns framtagna och de säkerhetsselar som skall finnas vid okulär inspektion finns tillgängliga. Efter avslutad på platsen kontroll ska en besiktningsrapport skrivas. Mycket underlagsberäkningar ska skickas med som bilaga samt en lista med punkter som syftar till att få en effektivare sol- och biobränsleanläggning.

  • 4. Lennermo, Gunnar
    et al.
    Persson, Tomas
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Pettersson, Ulrik
    Johansson, Mathias
    Underlag för utökad besiktning av sol- och biovärmesystem2011Report (Other academic)
    Abstract [sv]

    Det är svårt att på ett genomarbetat sätt, kontrollera en solvärmeanläggning som är i drift och det blir svårare när solvärmesystemet ska samverka med en biobränsleanläggning, som har sina speciella egenheter. Det enklaste och, som det kan tyckas, bästa sättet att kontrollera om en solvärmeanläggning fungerar, är att beräkna utifrån en värmemängdsmätare, som förhoppningsvis finns i anläggningen, hur mycket energi per m2 aktiv area som solfångaren har producerat per år. Om produktionen ligger mellan 300 – 350 kWh/m2 är det bra. Det är dock så att en solvärmeanläggning borde kunna producera betydligt mer värme om den bara ges lite bättre förutsättning eller att den faktiskt kan ge mindre, men ändå uppfylla de krav som ställdes. Det behöver inte nödvändigtvis vara antalet producerade solfångarkWh värme som är högt utan det viktigaste kanske är att antalet inbesparade kWh biobränsle är många. För att kunna få ett grepp om hur en solvärmeanläggning fungerar i sitt sammanhang bör det totala systemet redovisas framför allt med avseende på: • Värmedistributionssystemets uppbyggnad. Var, när och hur mycket kallt vatten ska värmas? • Energi- och effektnivåer för olika delar av systemet, framför allt under sommaren? • Vilka pannor och bränslen används, framför allt med betoning på reglerbarhet? Solvärmekretsen, som inte är speciellt annorlunda utformad än i andra lite större solvärmeanläggningar, ges i den här rapporten relativt stort utrymme, eftersom den samlade kompetensen bland de som gör besiktningar och kontroller inte är så hög. Mest berörda delar är: • Trycket i solvärmeanläggningen med avseende på expansionskärlets förtryck, systemets uppfyllnadstryck och driftsfunktioner • Flödet i anläggningen som inriktar sig på luftmedryckning, flödesfördelning och vanliga flödeshastigheter • Solfångarnas energi- och värmeeffektproduktion Huvuddelen av underlagsmaterialet bör ha samlats in före besöket, genom att försöka få tag på: • Förstudier för solvärme- och pannanläggning • Förfrågningsunderlag för i första hand solvärmeanläggningen • Driftstatistik • Data på hur det totala systemet ser ut Dessa data bör bearbetas innan besöket på plats, vilket ska inkludera en genomgång av driftsansvarig kompletterat med en guidad tur genom anläggningen. Besöket bör också vara förberett hos driftsansvariga så att stegar för att komma åt solfångarna finns framtagna och de säkerhetsselar, som ska användas vid okulär inspektion, finns tillgängliga. Efter avslutad på-platsen-kontroll ska en besiktningsrapport skrivas. Mycket underlagsberäkningar ska skickas med som bilaga samt en lista med punkter som syftar till att få en effektivare sol- och biobränsleanläggning.

  • 5. Letz, T
    et al.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    A New Concept for Characterisation of Solar Combisystems: The Fsc Method2003In: Proceedings ISES 2003, Gothenburg, Sweden, 2003Conference paper (Other academic)
  • 6.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    An improved dynamic solar collector model including condensation and asymmetric incidence angle modifiers2010Conference paper (Refereed)
  • 7.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Mätning och utvärdering av nya Mareco 1000 Solvärmefält i Torsåker hösten 20032003Report (Other academic)
  • 8.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Anderssen, E.
    Nordman, R.
    Kovacs, P.
    A simplified heat pump model for use in solar plus heat pump system simulation studies2012In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 30, p. 664-667Article in journal (Refereed)
    Abstract [en]

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found. © 2012 The Authors.

  • 9.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    A Solar Collector Model for TRNSYS Simulation and System Testing2002Report (Other academic)
  • 10.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Kovacs, P.
    Olsson, M.
    Persson, M.
    Pettersson, U.
    A new tool for standardized collector performance calculations2011Conference paper (Refereed)
    Abstract [en]

    A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Borås Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe on the basis of parameters from collector tests performed according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that intend to use it for conversion of collector model parameters derived from performance tests, into a more user friendly quantity i.e. the annual energy output. Energy output both per m2 and per collector module can be calculated.

  • 11.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Kovacs, P.
    Olsson, M.
    Persson, M.
    Pettersson, U.
    A tool for standardized collector performance calculations including PVT2012In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 30, p. 1354-1364Article in journal (Refereed)
    Abstract [en]

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations. © 2012 The Authors.

  • 12.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Kovacs, P.
    Pettersson, U.
    Experiences and lessons learned from 30 years of dynamic collector testing, modelling and simulation2011Conference paper (Refereed)
    Abstract [en]

    Dynamic testing and modeling (in contrast to Steady State line of action) of solar collectors is to prefer in most climates, except for the most extreme locations with clear skies every day. A very important part of dynamic testing and modeling is not only the thermal capacitance correction, but also the split of the solar radiation absorption modeling, into beam and diffuse and the modeling of the collectors' incidence angle dependency for both beam and diffuse radiation. These optical features are in most situations more important than the accuracy of the dynamic and thermal loss part of the model. This can be seen from the statistical analyze when evaluating test data. The t-ratios i.e. the parameter values divided by their standard deviations, are generally much higher (often 10 times higher) for the optical parameters than for the thermal loss ones. There are also important details concerning solar radiation measurements for beam and diffuse including alignment of sensors and test object, that are often not considered, which will be discussed and lessons learned will be given. A misalignment of just a few degrees of the collector test stand or the solar sensors will immediately show up in a dynamic test evaluation, especially when analyzing the incidence angle modifier behavior and thermal capacitance of a collector. To achieve good results in dynamic testing it is essential to understand the basic concepts of the method and to use this understanding when designing a test rig and collecting data during a test for later analyze. It is very desirable to use a continuous parameter feedback during the test, so that the test conditions can be changed hour by hour to derive more accurate results and shorten the testing time. Such advice will be discussed in the paper. Some of these findings has not yet reached the EN12975 standard level, and suggestions for revisions and improvements will be presented that have general application also for non standardized testing, for example research and development testing.

  • 13.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Kovacs, P.
    Pettersson, U.
    Björkman, J.
    Martinsson, C.
    Eriksson, J.
    Validation of a dynamic model for unglazed collectors including condensation: Application for standardised testing and simulation in TRNSYS and IDA2011Conference paper (Refereed)
    Abstract [en]

    An improved unglazed collector model has been validated for use in TRNSYS and IDA and also for future extension of the EN12975 collector test standard. The basic model is the same as used in the EN12975 test standard in the QDT dynamic method. In this case with the addition of a condensation term that can handle the operation of unglazed collectors below the dew point of the air. This is very desirable for simulation of recharging of ground source energy systems and direct operation of unglazed collectors together with a heat pump. The basic idea is to have a direct connection between collector testing and system simulation by using the same dynamic model and parameters during both testing and simulation. The model together with the parameters will be validated in each test in this way. This work describes the method applied to an unglazed collector operating partly below the dew point under real dynamic weather conditions, for a long period during the autumn 2010. The validation results also show that the model can handle operation of such a collector during the night. This is a common mode of operation for this collector type in a real system.

  • 14.
    Perers, Bengt
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Lorenz, Klaus
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Rönnelid, Mats
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Partiell förångning i solfångarsystem: överhettningsskydd för värmebäraren (främst glykol)2003Report (Other academic)
  • 15.
    Rönnelid, Mats
    et al.
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Lorenz, Klaus
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Nordlander, Svante
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Perers, Bengt
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Persson, Tomas
    Dalarna University, School of Technology and Business Studies, Environmental Engineering.
    Sol till både vatten och värme, Enkla åtgärder kan öka solvärmeutbytet2004Book (Other academic)
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf