The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity. A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.
This study reports on the first full-year field study in Sweden using bifacial photovoltaic modules. The two test sites are located on flat roofs with a low albedo of 0.05 in Linköping (58 °N) and were studied from December 2016 to November 2017. Site 1 has monofacial and bifacial modules with a 40° tilt facing south, which is optimal for annual energy yield for monofacial modules at this location. Site 2 has monofacial 40° tilt south-facing modules and bifacial vertical east–west orientated modules. The annual bifacial energy gain (BG E ) was 5% at site 1 and 1% at site 2 for albedo 0.05. The difference in power temperature coefficients between bifacial and monofacial modules was estimated to influence BG E by +0.4 and +0.1 percentage points on site 1 and 2, respectively. A higher albedo could be investigated on a sunny day with fresh snow for the bifacial east–west modules. The specific yield was 7.57 kWh/kW p , which was a yield increase of 48% compared with tar paper at similar solar conditions.
Electrochromic films of tungsten oxide and nickel oxide were made by reactive dc magnetron sputtering and were characterized by X-ray diffraction, Rutherford backscattering spectrometry, scanning electron microscopy, and atomic force microscopy. The optical properties were investigated in detail by spectroscopic ellipsometry and spectrophotometry, using a multiple-sample approach. The W-oxide film was modeled as a homogeneous isotropic layer, whereas the Ni-oxide film was modeled as an anisotropic layer with the optical axis perpendicular to the surface. Parametric models of the two layers were then used to derive complex refractive index in the 300-1700 nm range, film thickness, and surface roughness. A band gap of 3.15 eV was found for the W-oxide film, using a Tauc-Lorentz parameterization. For the Ni-oxide film, taken to have direct optical transitions, band gaps along the optical axis, perpendicular to it, and in an isotropic intermediate layer at the bottom of the film were found to be 3.95, 3.97, and 3.63 eV, respectively. Parameterization for the Ni oxide was made by use of the Lorentz model. (C) 2009 Elsevier B.V. All rights reserved.
The study reports on characterization of low-infrared-emittance paint top-coatings for interior building applications in which the thermal radiation becomes important in comparison with thermal conductance. The top-coating that consist of a binder with aluminium flakes has been optically characterized in the infrared wavelength range in order to determine single flake and binder emittance from reflectance measurements. The single flake emittance was found to be 0.12 for non-leafing cornflake. The absorption coefficient that determines the binder emittance as a function of binder thickness was 0.060 [μm]−2 and 0.085 [μm]−2 for Lumiflon and polyester respectively. These results were used as parameters in a simple model of the flake-binder top-coating to investigate how the emittance of the top-coating was influence by the two components and compared with a state-of-art low-emittance commercial paint. It was found from the modelling that replacing the polyester binder with Lumiflon reduces the infrared emittance (at room temperature) from 0.36 to 0.30. Increasing flake reflectance from 0.88 to 0.96 and at the same time reduce flake thickness from 2 to 1 μm gives an emittance of 0.20. However, the real samples prepared with Lumiflon showed a severe degradation caused by the flakes floating up closer to the surface which indicates a viscosity problem that needs to be solved for practical use. Thinner flakes with higher reflectance can be found if vacuum metallised pigments are used instead of ball-milled.