du.sePublications
Change search
Refine search result
12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Cao, x
    et al.
    Yuan, Y
    Xiang, B
    Sun, L
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures2018In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 158, p. 384-392Article in journal (Refereed)
  • 2. Chen, X
    et al.
    Su, Y
    Aydin, D
    Bai, H
    Jarimi, H
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Raffat, S
    Experimental investigation of a polymer hollow fibre integrated liquid desiccant dehumidification system with aqueous potassium formate solution2018In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 142Article in journal (Refereed)
    Abstract [en]

    Hollow fibres have been studied as the substitute for metallic materials due to the advantages such as light weight, corrosion resistant and low cost in heat and mass transfer applications. A novel polymer hollow fibre liquid desiccant dehumidification system, in which a cross-flow hollow fibre module (fibre inside diameter=1.4mm) serves as the dehumidifier, is presented in this paper. This novel hollow fibre integrated liquid desiccant dehumidification system can be used in an air conditioning system to provide a comfortable indoor environment for hot and humid area. Compared with other conventional liquid desiccant dehumidifier, the polymer hollow fibre has a very small diameter which leads to significantly increased surface area. Moreover, the porous feature of the hollow fibre module can help to eliminate any liquid desiccant droplets carryover into the process air. As a less corrosive and more environmental friendly working fluid, aqueous potassium formate (KCOOH) solution has been selected. The dehumidification performance of the proposed system were analysed experimentally under the conditions of incoming air temperature in the range of 30°C to 45°C. The variations of dehumidification sensible and latent effectiveness, moisture removal rates were studied by varying the incoming air velocity from 0.65 m/s to 4.5m/s. With the various values of incoming air relative humidity in the range of 55% to 75% and the solution concentrations between 36% and 62%, the experimental obtained latent effectiveness are in the range of 0.25 to 0.43 and the sensible effectiveness are in the range of 0.31 to 0.52, which is in a satisfactory agreement with the empirical correlation of effectiveness-NTU in the literature.

  • 3. Chen, X.
    et al.
    Su, Y.
    Aydin, D.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Ding, Y.
    Reay, D.
    Law, R.
    Riffat, S.
    Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape2017In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 154, p. 166-174Article in journal (Refereed)
    Abstract [en]

    Due to the advantages of light weight, corrosion resistant and low cost, hollow fibres have been studied as the substitute for metallic materials. A novel hollow fibre integrated evaporative cooling system, in which the hollow fibre module constitutes as the humidifier and the evaporative cooler, is proposed. This novel hollow fibre integrated evaporative cooling system will provide a comfortable indoor environment for hot and dry area. Moreover, the water vapour can permeate through the hollow fibre effectively, and the liquid water droplets will be prevented from mixing with the processed air. In order to avoid the flow channelling or shielding of adjacent fibres, the fibres inside each bundle were made into a spindle shape to allow maximum contact between the air stream and the fibre. The cooling performances of the proposed novel polymer hollow fibre integrated evaporative cooling system were experimentally investigated under the incoming air temperature in the range of 26 °C to 32 °C and relative humidity of 25%–35%. The effects of air velocities on the cooling effectiveness, heat and mass transfer coefficients, specific water consumption and pressure drop across the polymer hollow fibre module were analysed. Two sets of experimentally derived non-dimensional heat and mass transfer correlations were summarized, which could be favourable for the future design of polymer hollow fibre integrated evaporative cooling system.

  • 4. Duan, Zhiyin
    et al.
    Zhan, Changhong
    Zhang, Xingxing
    De Montfort University.
    Mustafa, Mahmud
    Zhao, Xudong
    Alimohammadisagvand, Behrang
    Hasan, Ala
    Indirect evaporative cooling: Past, present and future potentials2012In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 16, no 9, p. 6823-6850Article in journal (Refereed)
    Abstract [en]

    This paper reported a review based study into the Indirect Evaporative Cooling (IEC) technology, which was undertaken from a variety of aspects including background, history, current status, concept, standardisation, system configuration, operational mode, research and industrialisation, market prospect and barriers, as well as the future focuses on R&D and commercialisation. This review work indicated that the IEC technology has potential to be an alternative to conventional mechanical vapour compression refrigeration systems to take up the air conditioning duty for buildings. Owing to the continuous progress in technology innovation, particularly the M-cycle development and associated heat and mass transfer and material optimisation, the IEC systems have obtained significantly enhanced cooling performance over those the decade ago, with the wet-bulb effectiveness of greater than 90% and energy efficiency ratio (EER) up to 80. Structure of the IEC heat and mass exchanger varied from flat-plate-stack, tube, heat pipe and potentially wave-form. Materials used for making the exchanger elements (plate/tube) included fibre sheet with the single side water proofing, aluminium plate/tube with single side wicked setting (grooved, meshed, toughed etc), and ceramic plate/tube with single side water proofing. Counter-current water flow relevant to the primary air is considered the favourite choice; good distribution of the water stream across the wet surface of the exchanger plate (tube) and adequate (matching up the evaporation) control of the water flow rate are critical to achieving the expected system performance. It was noticed that the IEC devices were always in combined operation with other cooling measures and the commonly available IEC related operational modes are (1) IEC/DEC system; (2) IEC/DEC/mechanical vapour compression system; (3) IEC/desiccant system; (4) IEC/chilled water system; and (5) IEC/heat pipe system. The future potential operational modes may also cover the IEC-inclusive fan coil units, air handle units, cooling towers, solar driven desiccant cycle, and Rankine cycle based power generation system etc. Future works on the IEC technology may focus on (1) heat exchanger structure and material; (2) water flowing, distribution and treatment; (3) incorporation of the IEC components into conventional air conditioning products to enable combined operation between the IEC and other cooling devices; (4) economic, environment and social impacts; (5) standardisation and legislation; (6) public awareness and other dissemination measures; and (7) manufacturing and commercialisation. All above addressed efforts may help increase the market ratio of the IEC to around 20% in the next 20 years, which will lead to significant saving of fossil fuel consumption and cut of carbon emission related to buildings.

  • 5. Gu, Yaxiu
    et al.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Myhren, Jonn Are
    Dalarna University, School of Technology and Business Studies, Construction.
    Han, Mengjie
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Chen, Xiangjie
    Yuan, Yanping
    Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method2018In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 165, p. 8-24Article in journal (Refereed)
    Abstract [en]

    The solar energy share in Sweden will grow up significantly in next a few decades. Such transition offers not only great opportunity but also uncertainties for the emerging solar photovoltaic/thermal (PV/T) technologies. This paper therefore aims to conduct a techno-economic evaluation of a reference solar PV/T concentrator in Sweden for building application. An analytical model is developed based on the combinations of Monte Carlo simulation techniques and multi energy-balance/financial equations, which takes into account of the integrated uncertainties and risks of various variables. In the model, 11 essential input variables, i.e. average daily solar irradiance, electrical/thermal efficiency, prices of electricity/heating, operation & management (OM) cost, PV/T capital cost, debt to equity ratio, interest rate, discount rate, and inflation rate, are considered, while the economic evaluation metrics, such as levelized cost of energy (LCOE), net present value (NPV), and payback period (PP), are primarily assessed. According to the analytical results, the mean values of LCOE, NPV and PP of the reference PV/T connector are observed at 1.27 SEK/kW h (0.127 €/kW h), 18,812.55 SEK (1881.255 €) and 10 years during its 25 years lifespan, given the project size at 10.37 m2 and capital cost at 4482–5378 SEK/m2 (448.2–537.8 €/m2). The positive NPV indicates that the investment on the selected PV/T concentrator will be profitable as the projected earnings exceeds the anticipated costs, depending on the NPV decision rule. The sensitivity analysis and the parametric study illustrate that the economic performance of the reference PV/T concentrator in Sweden is mostly proportional to solar irradiance, debt to equity ratio and heating price, but disproportionate to capital cost and discount rate. Together with additional market analysis of PV/T technologies in Sweden, it is expected that this paper could clarify the economic situation of PV/T technologies in Sweden and provide a useful model for their further investment decisions, in order to achieve sustainable and low-carbon economics, with an expanded quantitative discussion of the real economic or policy scenarios that may lead to those outcomes.

  • 6.
    Han, Mengjie
    et al.
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Xu, Liguo
    May, Ross
    Pan, Song
    Wu, Jinshun
    A review of reinforcement learning methodologies on control systems for building energy2018Report (Other academic)
    Abstract [en]

    The usage of energy directly leads to a great amount of consumption of the non-renewable fossil resources. Exploiting fossil resources energy can influence both climate and health via ineluctable emissions. Raising awareness, choosing alternative energy and developing energy efficient equipment contributes to reducing the demand for fossil resources energy, but the implementation of them usually takes a long time. Since building energy amounts to around one-third of global energy consumption, and systems in buildings, e.g. HVAC, can be intervened by individual building management, advanced and reliable control techniques for buildings are expected to have a substantial contribution to reducing global energy consumptions. Among those control techniques, the model-free, data-driven reinforcement learning method seems distinctive and applicable. The success of the reinforcement learning method in many artificial intelligence applications has brought us an explicit indication of implementing the method on building energy control. Fruitful algorithms complement each other and guarantee the quality of the optimisation. As a central brain of smart building automation systems, the control technique directly affects the performance of buildings. However, the examination of previous works based on reinforcement learning methodologies are not available and, moreover, how the algorithms can be developed is still vague. Therefore, this paper briefly analyses the empirical applications from the methodology point of view and proposes the future research direction.

  • 7. He, Wei
    et al.
    Hong, Xiaoqiang
    Zhao, Xudong
    Zhang, Xingxing
    University of Hull.
    Shen, Jinchun
    Ji, Jie
    Operational performance of a novel heat pump assisted solar facade loop-heat-pipe water heating system2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 146, p. 371-382Article in journal (Refereed)
    Abstract [en]

    This paper aims to present an investigation into the operational performance of a novel heat pump assisted solar façade loop-heat-pipe (LHP) water heating system using both theoretical and experimental methods. This involved (1) development of a computer numerical model; (2) simulation of the operational performance of the system by using the model; (3) test rig construction; and (4) dedicated experiment for verification of the model. It was found that the established model is able to predict the operational performance of the system at a reasonable accuracy. Analyses of the research results indicated that under the selected testing conditions, the average thermal efficiency of the LHP module was around 71%, much higher than that of the loop heat pipe without heat pump assistance. The thermal efficiency of the LHP module grew when the heat pump was turned-on and fell when the heat pump was turned-off. The water temperature remained a steadily growing trend throughout the heat pump turned-on period. Neglecting the heat loss of the water tank, the highest coefficient of the performance could reach up to 6.14 and its average value was around 4.93. In overall, the system is a new façade integrated, highly efficient and aesthetically appealing solar water heating configuration; wide deployment of the system will help reduce fossil fuel consumption in the building sector and carbon emission to the environment.

  • 8. He, Wei
    et al.
    Hong, Xiaoqiang
    Zhao, Xudong
    Zhang, Xingxing
    University of Hull.
    Shen, Jinchun
    Ji, Jie
    Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe facade-based heat pump water heating system2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 77, p. 180-191Article in journal (Refereed)
    Abstract [en]

    The aim of the paper was to present a dedicated theoretical investigation into the thermal performance of a novel solar loop-heat-pipe façade based heat pump water heating system. This involved thermo-fluid analyses, computer numerical model development, the model running up, modelling result analyses and conclusion. An energy balance network was established on each part and the whole range of the system to address the associated energy conversion and transfer processes. On basis of this, a computer numerical model was developed and run up to predict the thermal performance of such a system at different system configurations, layouts and operational conditions. It was suggested that the loop heat pipes could be filled with either water, R134a, R22 or R600a; of which R600a is the favourite working fluid owing to its relatively larger heat transfer capacity and positive pressure in operation. Variations in the system configuration, i.e., glazing covers, heat exchangers, would lead to identifiable differences in the thermal performance of the system, represented by the thermal efficiency and COP. Furthermore, impact of the external operational parameters, i.e., solar radiation and ambient air temperature, to the system's thermal performance was also investigated. The research was based on an innovative loop-heat-pipe façade and came up with useful results reflecting the thermal performance of the combined system between the façade and heat pump. This would help promote development and market penetration of such an innovative solar heating technology, and thus contribute to achieving the global targets in energy saving and carbon emission reduction.

  • 9. He, Wei
    et al.
    Zhang, Gan
    Zhang, Xingxing
    University of Nottingham.
    Ji, Jie
    Li, Guiqiang
    Zhao, Xudong
    Recent development and application of thermoelectric generator and cooler2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 143, p. 1-25Article in journal (Refereed)
    Abstract [en]

    Energy crisis and environment deterioration are two major problems for 21st century. Thermoelectric device is a promising solution for those two problems. This review begins with the basic concepts of the thermoelectric and discusses its recent material researches about the figure of merit. It also reports the recent applications of the thermoelectric generator, including the structure optimization which significantly affects the thermoelectric generator, the low temperature recovery, the heat resource and its application area. Then it reports the recent application of the thermoelectric cooler including the thermoelectric model and its application area. It ends with the discussion of the further research direction.

  • 10. Hu, J
    et al.
    Chen, W
    Yin, Y
    Li, Y
    Yang, D
    Wang, H
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Electrical-thermal-mechanical properties of multifunctional OPV-ETFE foils for transparent membrane buildings2018In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 66, p. 394-402Article in journal (Refereed)
    Abstract [en]

    ETFE (ethylene tetrafluoroethylene) foils integrated organic photovoltaic cells (OPV) have attracted considerable attention in recent years due to the achievement of sustainability. As building materials, multifunctional OPV-ETFE foils could produce electricity, store thermal energy and possess structural capability. In this case, electrical, thermal and mechanical properties coexist and influence each other due to photovoltaic/thermal effects. Understanding the fundamental mechanism is significant to analyze and design corresponding structures. This paper concerns coupled properties of OPV-ETFE specimens with controlled experiments. One-parameter and two-parameter analysis of two typical specimens are performed to investigate essential properties. Experimental observations show that within normal working conditions, electrical properties are relatively independent but that thermal-mechanical properties are related to each other. Yield stress, yield strain and elastic modulus are calculated from stress-strain curves; these mechanical properties are comparable with those of original ETFE foils at the same temperature. It is concluded from temperature-stress curves that yield point has a critical effect on temperature-stress correlation and that mechanical properties of double OPV specimens are better than those of single OPV specimens. Generally, these mechanical properties could provide basic insights into evaluation of energetic performance and structural behavior of transparent membrane buildings.

  • 11. Li, G.
    et al.
    Tang, L.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Dong, J.
    Xiao, M.
    Factors affecting greenhouse microclimate and its regulating techniques: a review2018In: IOP Conference Series: Earth and Environmental Science, 2018, Vol. 167, no 1, article id 012019Conference paper (Refereed)
    Abstract [en]

    This paper reviews factors affecting greenhouse microclimate and its regulating techniques towards upgrading the greenhouse applications in the area of southeast China which have little or very basic technology integration. The microclimate of greenhouse is apparently influenced by the shape and its orientation, the wind direction, the property of covering material, and the use of insect-proof screen as they eventually affect the total solar radiation, the thermal characterises, and the flow pattern inside. The natural ventilation and sun block are the most common method to cool the greenhouse, but more efficient evaporative cooling such as pad-fan system, misting/fogging system and roof sprinkler are required with extreme temperatures. The earth to air heat exchanger and the heat storage using phase change material may be used for heating or cooling throughout the year which are more economic and energy-saving than other traditional thermal technologies. The reviewed knowledge provides insights into upgrading greenhouse applications in Ningbo area towards more sustainable and efficient greenhouse farming.

  • 12. Li, G
    et al.
    Tang, L
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Hao, J
    Xiao, M
    Dong, J
    Numerical and experimental investigations on improving the efficiency of Clean-In-Place procedures in closed processing systems: A review2017Conference paper (Refereed)
    Abstract [en]

    This paper reviews the recent numerical and experimental investigations on improving the efficiency of Clean-In-Place procedures thus saving operation energy. The paper covers the fouling of equipment surfaces, the concept of CIP and its operation practices, the physical factors controlling the efficiency of CIP procedures with a special attention being paid to the hydrodynamic force of the cleaning fluids. The studies show that CIP efficiency dependents on many factors, such as the type of soil to be removed, the cleaning time, the temperature of cleaning agent, and the favourable hydrodynamic force of the moving liquid. Among the hydrodynamic factors, the wall shear stress and its fluctuation rate reported to be the dominating factor for cleaning straight circular pipes. Whilst for cleaning of more complex geometries and areas difficult to clean, the controlling factor may also include the flow pattern, flow exchange, flow turbulence, and the property of the recirculation zone.

  • 13. Li, Guozhen
    et al.
    Tang, Llewellyn
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Xiao, Manxuan
    Dong, Jie
    Effect of solar radiation and natural ventilation on temperature distribution in a greenhouse: a numerical study2017Conference paper (Refereed)
  • 14. Liu, G
    et al.
    Xiao, M
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Gál, Csilla V
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Chen, X
    Liu, L
    Pan, S
    Wu, J
    Tang, L
    Clements-Croome, D
    A review of air filtration technologies for sustainable and healthy building ventilation2017In: Sustainable cities and society, ISSN 2210-6707, Vol. 32, p. 375-396Article in journal (Refereed)
    Abstract [en]

    Urbanization increased population density in cities and consequently leads to severe indoor air pollution. As a result of these trends, the issue of sustainable and healthy indoor environment has received increasing attention. Various air filtration techniques have been adopted to optimize indoor air quality. Air filtration technique can remove air pollutants and effectively alleviate the deterioration of indoor air quality. This paper presents a comprehensive review on the synergistic effect of different air purification technologies, air filtration theory, materials and standards. It evaluated different air filtration technologies by considering factors such as air quality improvement, filtering performance, energy and economic behaviour, thermal comfort and acoustic impact. Current research development of air filtration technologies along with their advantages, limitations and challenges are discussed. This paper aims to drive the future of air filtration technology research and development in achieving sustainable and healthy building ventilation.

  • 15. Liu, Haoyang
    et al.
    Zhang, Xingxing
    Saffa, Riffat
    A Novel Vacuum Window System2011In: Proceeding 10th International Conference on Sustainable Energy Technologies, Istanbul, Turkey, 04th -07th September 2011, 2011Conference paper (Refereed)
  • 16. Liu, Shengchun
    et al.
    Hao, Ling
    Rao, Zhiming
    Zhang, Xingxing
    University of Nottingham.
    Experimental study on crystallization process and prediction for the latent heat of ice slurry generation based sodium chloride solution2017In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 185, p. 1948-1953Article in journal (Refereed)
    Abstract [en]

    The research on the crystallization process is a fundamental task for the investigation of freezing properties of ice slurry. This paper presents an experimental study on the influence of concentration on essential parameters of the crystallization process for the ice slurry produced from sodium chloride solution using a scraped surface heat exchanger. It was found that the liquid temperature experiences four different segments during the whole crystallization process. This trend keeps accordance with the result from literature and it was used to verify the accuracy of the experiment test. It was also observed that the concentrations of sodium chloride solution have significant effects on several freezing properties of the ice slurry generation. The curves obtained in this paper are useful to predict the freezing point and the solidification time in practice. Additionally, a mathematical correlation between the latent heat and concentration was developed eventually by polynomial fitting the curve gained from experiments. The error between the fitting curves and original experimental data was no more than 5%. Totally, during the ice generation process, it is of great significance that the concentration of brine solution can be adjusted to meet the cooling capacity requirement according to the fitting curves and mathematical correlations obtained in this paper.

  • 17. Liu, Xuezhi
    et al.
    Liu, Huolong
    Zhang, Xingxing
    University of Hull.
    Zhao, Xudong
    Transmission network expansion planning by improved simulated annealing approach2014In: SOP Transactions on Power Transmission and Smart Grid, ISSN 2380-0003, Vol. 1, no 1, p. 1-8Article in journal (Refereed)
    Abstract [en]

    The transmission network expansion planning problem is effectively solved by the improved simulated annealing approach. A mixed integer nonlinear programming model of this problem is formulated using the DC power flow model. The detailed process of simulated annealing algorithm has been improved, and applied to 6-bus and 24-bus systems. The solutions obtained by the improved SA approach are compared with solutions found using LINGO software. Numerical results have shown that the proposed approach requires less time to obtain local optimal solutions.

  • 18. Liu, Xuezhi
    et al.
    Zhang, Xingxing
    University of Hull.
    Zhao, Xudong
    Liu, Huolong
    Damping control for power system based on state observer2014In: SOP Transactions on Power Transmission and Smart Grid, ISSN 2380-0003, Vol. 1, no 1, p. 9-19Article in journal (Refereed)
    Abstract [en]

    In this work, design of damping controller for Power System based on state observer is studied. The linearized state equation model of multi-machine power system is built, which includes four-order generator model and three-order excitation model. The power system damping characteristic is improved using feedback control based on the states that are estimated by full-order and reduced-order observer. The simulation results using a four-machine two-area system is utilized to validate the effectiveness of the proposed method.

  • 19. Lu, Lu
    et al.
    Yan, Yuting
    Zhang, Xingxing
    Li, Junming
    Zhao, Xudong
    Theoretical Study on City Gas Pipeline Leakage and Diffusion2013In: Proceeding 13th International Conference on Sustainable Energy Technologies, Hong Kong, 28th -30th August 2013, 2013Conference paper (Refereed)
  • 20. Lu, Lu
    et al.
    Zhang, Xingxing
    University of Hull.
    Yan, Yuting
    Li, Jun-Ming
    Zhao, Xudong
    Theoretical analysis of natural-gas leakage in urban medium-pressure pipelines2014In: Journal of Environment and Human, ISSN 2373-8324, Vol. 1, no 2, p. 71-86Article in journal (Refereed)
    Abstract [en]

    With widespread deployment of the urban natural gas industry, the energy security is now becoming one of the priorities in practice. Gas leakage may occur from the pipeline during the collection and transportation process. This article therefore presented a theoretical study on the urban natural gas pipeline leakage in order to provide the basic theory of the rescue policy making in emergent occasions. The investigation was undertaken through the fundamental analysis based on derivation of gas leakage models. The gas leakage model was applied to analyze the pressure, temperature and flow rate of gas leakage over time under both the steady-state and dynamic conditions. Two main impacting factors, pressure and hole size, were subsequently discussed. It is concluded that for the steady leakage the flow rate increases with the increase of pipeline pressure and hole size. And the distribution of pressure, temperature, density and velocity were calculated along the pipeline. For the unsteady leakage, the time of leakage is very short under different initial pressure and hole size, and the total leakage and average leakage rates were analyzed.

  • 21. Lu, Lu
    et al.
    Zhang, Xingxing
    Zhao, Xudong
    Numerical simulation of gas pipeline leakage and diffusion2014Conference paper (Refereed)
  • 22. Luo, H.
    et al.
    Liang, X.
    Lu, J.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Applicability analysis of insulation in different climate zones of China2017In: Energy Procedia, 2017, Vol. 142, p. 1835-1841Conference paper (Refereed)
  • 23. Ma, Tianqi
    et al.
    Jia, Zhenyuan
    Li, Hongqi
    Zhang, Xingxing
    Zhao, Xudong
    Optimization of Integrated Energy Process in China Industrial Compressed Air System2013Conference paper (Refereed)
  • 24. Pan, S.
    et al.
    Wang, H.
    Pei, F.
    Yang, L.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    An Investigation on Energy Consumption of Air Conditioning System in Beijing Subway Stations2017In: Energy Procedia, 2017, Vol. 142, p. 2568-2573Conference paper (Refereed)
  • 25. Pan, S
    et al.
    Xiong, Y
    Han, Y
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Xia, L
    Wei, S
    Wu, J
    Han, Mengjie
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    A study on influential factors of occupant window-opening behavior in an office building in China2018In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 133, p. 41-50Article in journal (Refereed)
    Abstract [en]

    Occupants often perform many types of behavior in buildings to adjust the indoor thermal environment. In these types, opening/closing the windows, often regarded as window-opening behavior, is more commonly observed because of its convenience. It not only improves indoor air quality to satisfy occupants' requirement for indoor thermal comfort but also influences building energy consumption. To learn more about potential factors having effects on occupants' window-opening behavior, a field study was carried out in an office building within a university in Beijing. Window state (open/closed) for a total of 5 windows in 5 offices on the second floor in 285 days (9.5 months) were recorded daily. Potential factors, categorized as environmental and non-environmental ones, were subsequently identified with their impact on window-opening behavior through logistic regression and Pearson correlation approaches. The analytical results show that occupants' window-opening behavior is more strongly correlated to environmental factors, such as indoor and outdoor air temperatures, wind speed, relative humidity, outdoor FM2.5 concentrations, solar radiation, sunshine hours, in which air temperatures dominate the influence. While the non-environmental factors, i.e. seasonal change, time of day and personal preference, also affects the patterns of window-opening probability. This paper provides solid field data on occupant window opening behavior in China, with high resolutions and demonstrates the way in analyzing and predicting the probability of window-opening behavior. Its discussion into the potential impact factors shall be useful for further investigation of the relationship between building energy consumption and window-opening behavior.

  • 26. Pan, Song
    et al.
    Pei, Fei
    Wang, Hongwei
    Liu, Jiaping
    Wei, Yixuan
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Li, Guoqing
    Gu, Yaxiu
    Design and experimental study of a novel air conditioning system using evaporative condenser at a subway station in Beijing, China2018In: Sustainable cities and society, ISSN 2210-6707Article in journal (Refereed)
    Abstract [en]

    Air conditioning system (AC) contributes significantly to the energy consumption of underground metros. In China, most metro stations are designed with water-cooling centralized air conditioning (WC-AC) system, it has been found that several serious problems are brought by this conventional system, such as large space occupying, water leaking, cooling tower noise and low system efficiency. In order to solve these problems, a novel energy-efficient AC system incorporating an independent evaporative condenser (EC) has been proposed and installed at Futong metro station in Beijing, China. A series of pilot measurements were conducted to analyze the cooling performance and energy consumption of this novel EC-AC system. During the testing period, the average refrigeration efficiency of COP, SCOP and ACOP in A and B side is up to 3.8/3.9, 3.4/3.4 and 2.5/2.3. At the same time, some operation problems such as unbalanced working condition have been identified during measurement. The research indicates that such EC-AC system could be a feasible solution to enhance the energy efficiency and reduce the operational costs and carbon emission in metro stations.

  • 27. Pan, Song
    et al.
    Wang, Xingru
    Wei, Shen
    Xu, Chuanqi
    Zhang, Xingxing
    University of Nottingham.
    Xie, Jingchao
    Tindall, Jess
    de Wilde, Pieter
    Energy waste in buildings due to occupant behaviour2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 2233-2238Article in journal (Refereed)
    Abstract [en]

    Occupants’ behaviour has a significant impact on the energy performance of buildings. A good understanding of how occupants use a building provides a possibility of promoting the building's energy efficiency through changing occupant behaviour. Building simulation has been adopted as a useful method by building engineers for quantifying the effects of changing occupant behaviour on the building's energy consumption and indoor environment. However, due to the lack of real measured data with respect to how occupants use the building, such simulation work has relied on assumed behavioural patterns, which significantly reduces the reliability of the predicted results. This paper describes a longitudinal study monitoring occupants’ heating, window opening and cooling behaviour in an office building throughout summer, transitional and winter periods. These behavioural data were then used to drive dynamic building performance simulation to predict the energy saving potential of changing behaviour. Comparison with predicted results by assumed behavioural patterns reflected that improperly assumed behavioural patterns may either overestimate or underestimate the energy saving potential of changing behaviour, especially for unextreme behaviours.

  • 28. Pan, Song
    et al.
    Wang, Xinru
    Wei, Yixuan
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Gál, Csilla V
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Rend, Guangying
    Yan, Da
    Yong, Shi
    Wu, Jinshun
    Liu, Jiaping
    Cluster analysis for occupant-behavior based electricity load patterns in buildings: a case study in Shanghai residences2017In: Building Simulation, ISSN 1996-3599, E-ISSN 1996-8744, Vol. 10, no 6, p. 889-898Article in journal (Refereed)
    Abstract [en]

    In building performance simulation, occupant behavior contributes to large uncertainties, which often lead to considerable discrepancies between actual energy consumption and simulation results. This paper aims to extract occupant-behavior related electricity load patterns using classical K-means clustering approach at the initial investigation stage. Smart-metering data from a case study in Shanghai, China, was used for the load pattern analysis. The electricity load patterns of occupants were examined on a daily/weekly/seasonal basis. According to their load patterns, occupants were categorized as (a) white-collar workers, (b) poor or older families and (c) rich or young families. The daily patterns indicated that electricity use was much more random and fluctuated over a wide range. Most households of the monitored communities consumed relatively-low electricity; the characteristic double peak with higher level of consumption in the morning and evening were only apparent in a relatively small subset of residents (mostly white-collar workers). The weekly analysis found that significant load shifting towards weekend days occurred in the poor or old family group. The electricity saving potential was greatest in the white-collar workers and the rich or young family groups. This study concludes with recommendations to stakeholders utilizing our load profiling results. The research provides a rare insight into the electricity-use-related occupant behaviors of Shanghai residents through the case study of two communities. The findings of the study are also presented in a meaningful way so that they can directly aid the decision-making of governments and other stakeholders interested in energy efficiency. The research results are also relevant to the building energy simulation community as they are derived from observations, and thus can have the potential to improve the efficiency and accuracy of numerical simulation results.

  • 29. Qiu, Zhongzhu
    et al.
    Zhao, Xudong
    Li, Peng
    Zhang, Xingxing
    University of Hull.
    Ali, Samira
    Tan, Junyi
    Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material),slurry based PV/T module2015In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 87, p. 686-698Article in journal (Refereed)
    Abstract [en]

    Aim of the paper is to present a theoretical investigation into the energy performance of a novel PV/T module that employs the MPCM (Micro-encapsulated Phase Change Material) slurry as the working fluid. This involved (1) development of a dedicated mathematical model and computer program; (2) validation of the model by using the published data; (3) prediction of the energy performance of the MPCM (Microencapsulated Phase Change Material) slurry based PV/T module; and (4) investigation of the impacts of the slurry flow state, concentration ratio, Reynolds number and slurry serpentine size onto the energy performance of the PV/T module. It was found that the established model, based on the Hottel–Whillier assumption, is able to predict the energy performance of the MPCM slurry based PV/T system at a very good accuracy, with 0.3–0.4% difference compared to a validated model. Analyses of the simulation results indicated that laminar flow is not a favorite flow state in terms of the energy efficiency of the PV/T module. Instead, turbulent flow is a desired flow state that has potential to enhance the energy performance of PV/T module. Under the turbulent flow condition, increasing the slurry concentration ratio led to the reduced PV cells' temperature and increased thermal, electrical and overall efficiency of the PV/T module, as well as increased flow resistance. As a result, the net efficiency of the PV/T module reached the peak level at the concentration ratio of 5% at a specified Reynolds number of 3,350. Remaining all other parameters fixed, increasing the diameter of the serpentine piping led to the increased slurry mass flow rate, decreased PV cells' temperature and consequently, increased thermal, electrical, overall and net efficiencies of the PV/T module. In overall, the MPCM slurry based PV/T module is a new, highly efficient solar thermal and power configuration, which has potential to help reduce fossil fuel consumption and carbon emission to the environment.

  • 30. Ren, Guangying
    et al.
    Sunikka-Blank, Minna
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    The Influence of Variation in Occupancy Pattern on Domestic Energy Simulation Prediction: A Case Study in Shanghai2017Conference paper (Refereed)
  • 31. Shen, Jingchun
    et al.
    Zhang, Xingxing
    He, Wei
    Xu, Peng
    Zhao, Xudong
    Design, Fabrication and Experimental Study of a Loop-heat-pipe based Solar Thermal Facade Water Heating System2015Conference paper (Refereed)
  • 32. Shen, Jingchun
    et al.
    Zhang, Xingxing
    University of Nottingham.
    Yang, Tong
    Tang, Llewellyn
    Cheshmehzangi, Ali
    Wu, Yupeng
    Huang, Guiqin
    Zhong, Dan
    Xu, Peng
    Liu, Shengchun
    Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin-fin flow channel for building integration2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 168, p. 48-64Article in journal (Refereed)
    Abstract [en]

    The fully building integrated Solar Thermal Facade (STF) systems can become potential solutions for aesthetics architectural design, as well as for the enhancement of energy efficiency and reduction of operational cost in the contemporary built environment. As a result, this article introduces a novel compact STF with internally extruded pin–fin flow channel that is particularly suitable for the building integration. A dedicated simulation model was developed on basis of the heat transfer and the flow mechanics. A prototype of this STF was fabricated and then it was tested under a series of controlled environmental conditions. The experimental validation illustrated a good agreement with the simulation results, indicating the established model was able to predict the STF’s thermal performance at a reasonable accuracy (i.e. mean deviation of less than 5.46%). The impacts of several operational parameters, i.e. equivalent solar radiation, air temperature, air velocity, water mass flow rate and inlet water temperature, on the STF thermal performance were then discussed respectively. Given the baseline testing condition, the collector efficiency factor F′ is almost 0.9930, leading to a relatively high nominal thermal efficiency at about 63.21%, which demonstrates such STF, with simpler structure, lower cost and higher feasibility in architectural design, can achieve an equivalent or better thermal performance than recent bionic STF or the conventional ones. It is also concluded that the thermal efficiency varies proportionally with solar radiation, air temperature, and mass flow rate of water, but oppositely to air velocity and inlet water temperature. A sharp decreasing trend of this STF’s thermal efficiency against the (Tin − Ta)/I was observed under the given operational conditions, which indicates current STF design is only suitable for pool heating, domestic hot water and radiant space heating in areas/climates with warm ambient air temperature and sufficient solar radiation. The overall research results are beneficial for further design, optimization and application of such STF in various solar driven systems, including the provision of hot water, space heating/cooling, increased ventilation, or even electricity in buildings. Such STF technology has the potential to boost the building energy efficiency and literally turn the envelope into an independent energy plant, creating the possibility of solar-thermal technologies deployment in high-rise buildings.

  • 33. Shen, Jingchun
    et al.
    Zhang, Xingxing
    University of Nottingham.
    Yang, Tong
    Tang, Llewellyn
    Shinohara, Hiroyuki
    Wu, Yupeng
    Wang, Hong
    Pan, Song
    Wu, Jinshun
    Xu, Peng
    Experimental study of a compact unglazed Solar Thermal Facade (STF) for energy-efficient buildings2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 104, p. 3-8Article in journal (Refereed)
    Abstract [en]

    This paper presents a real-time experimental measurement of a novel compact unglazed solar thermal facade (STF) system at outdoor environment in Shanghai, China for about a whole summer week. It demonstrates the daily average solar thermal efficiency fluctuated from 40% to 45.5%. The overall result indicates the advantages of the STF with simple structure, low cost and high feasibility in architectural design for energy-efficient building application, especially at future district or city levels.

  • 34.
    Shen, Jingchun
    et al.
    University of Nottingham, Ningbo.
    Zhang, Xingxing
    University of Nottingham.
    Yang, Tong
    Tang, Llewellyn
    Shinohara, Hiroyuki
    Wu, Yupeng
    Wang, Hong
    Pan, Song
    Wu, Jinshun
    Xu, Peng
    Optimizing the configuration of a compact thermal facade module for solar renovation concept in buildings2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 104, p. 9-14Article in journal (Refereed)
    Abstract [en]

    Solar concepts show potentially an improved cost-performance (energy) ratio when applied as the integrated parts of building renovations. This paper reported a compact solar thermal facade (STF) module with the internally extruded flow channel suiting for solar renovation concept in buildings. A few of impact factors were considered for the parametric study in order to optimize the STF's configuration for various applications through the validated simulation model. The overall research results are expected to be useful for further improvement in the thermal performance of solar renovation measures.

  • 35.
    Shen, Jingchun
    et al.
    University of Nottingham, Ningbo.
    Zhang, Xingxing
    University of Nottingham.
    Yang, Tong
    Tang, Llewellyn
    Wu, Yupeng
    Jin, Ruoyu
    Pan, Song
    Wu, Jinshun
    Xue, Peng
    Conceptual development of a compact unglazed Solar Thermal Facade (STF) for building integration2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 96, p. 42-54Article in journal (Refereed)
    Abstract [en]

    This research aims to develop an initiative modular unglazed Solar Thermal Facade (STF) concept initially for hot water generation to facilitate the integration of solar energy with buildings. The new STF concept is simple structure, low cost, and aesthetically appealing with easy installation but is expected to achieve the equivalent thermal efficiency as the conventional STFs. It delivered alternative design in terms of material, colour, texture, shape, size, architectural design, installation method, array connection, hypothetical system application, and solar coverage. Two common design variants i.e. (a) the STF cladding system and (b) the prefabricated STF wall system were described respectively for existing and new low-rise building typologies. Interaction of inclination, orientation, and insolation were discussed for the optimum STF position on the building. Four currently available methods for installation of such STF with buildings were summarized and three typical array connection methods were identified. The decentralized connection was recommended for different types of STF hot water systems. It is customary to design for a solar coverage of 50 to 60 percent for water heating in detached houses; in apartment buildings 30 to 40 percent are more commonly assumed. The concept design in this paper hereby illustrates the precedence for the hypothetical function by the creation of new ideas and also forms up the physical structure or operating principle for the investigations in near future.

  • 36.
    Shen, Jingchun
    et al.
    University of Nottingham, Ningbo.
    Zhang, Xingxing
    Yang, Tong
    Tang, Llewellyn
    Wu, Yupeng
    Pan, Song
    Wu, Jinshun
    Xu, Peng
    Design strategy of a compact unglazed solar thermal facade (STF) for building integration based on BIM concept2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 1-6Article in journal (Refereed)
    Abstract [en]

    This paper discusses the specific design strategy of a novel compact unglazed Solar Thermal Facade (STF) for building performance research in architectural practice. It identifies the basic role of such STF in the building performance simulation and analysis. A dedicated design strategy based on the BIM (building information modelling) concept for application of the proposed STF is then developed in details. This research work clarifies the necessary steps in ensuring that the environmental/economic factors and energy-efficiency strategies of the STF are integrated with the building design and analysis process at the early stage.

  • 37.
    Shen, Jingchun
    et al.
    University of Nottingham, Ningbo.
    Zhang, Xingxing
    University of Nottingham.
    Yang, Tong
    Tang, Llewellyn
    Wu, Yupeng
    Pan, Song
    Wu, Jinshun
    Xue, Peng
    The early design stage of a novel Solar Thermal Facade (STF) for building integration: Energy performance simulation and socio-economic analysis2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 96, p. 55-66Article in journal (Refereed)
    Abstract [en]

    This paper provides a feasibility study of a new solar thermal façade (STF) concept for building integration from both technical and economic aspects in Shanghai area of China. The whole set of technical evaluation and economic analysis was investigated through simulation of a reference DOE residential building model in IES-VE software and a dedicated dynamic business model consisting of several critical financial indexes. In order to figure out the cost effectiveness of the STF concept, research work consisted of: (1) exploring the overall feasibility, i.e. energy load, energy savings, operational cost and environmental benefits, and (2) investigating the financial outputs for investment decisions within three different purchase methods. This paper presents a multidisciplinary research method that is expected to be beneficial and supportive for the strategic decision at the early design stage and it also offers a different angle to assess the economic performance of the STF application.

  • 38. Wei, Yixuan
    et al.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Shi, Yong
    Xia, Liang
    Pan, Song
    Wu, Jinshun
    Han, Mengjie
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Zhao, Xiaoyun
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    A review of data-driven approaches for prediction and classification of building energy consumption2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 82, no 1, p. 1027-1047Article in journal (Refereed)
    Abstract [en]

    A recent surge of interest in building energy consumption has generated a tremendous amount of energy data, which boosts the data-driven algorithms for broad application throughout the building industry. This article reviews the prevailing data-driven approaches used in building energy analysis under different archetypes and granularities, including those methods for prediction (artificial neural networks, support vector machines, statistical regression, decision tree and genetic algorithm) and those methods for classification (K-mean clustering, self-organizing map and hierarchy clustering). The review results demonstrate that the data-driven approaches have well addressed a large variety of building energy related applications, such as load forecasting and prediction, energy pattern profiling, regional energy-consumption mapping, benchmarking for building stocks, global retrofit strategies and guideline making etc. Significantly, this review refines a few key tasks for modification of the data-driven approaches in the context of application to building energy analysis. The conclusions drawn in this review could facilitate future micro-scale changes of energy use for a particular building through the appropriate retrofit and the inclusion of renewable energy technologies. It also paves an avenue to explore potential in macro-scale energy-reduction with consideration of customer demands. All these will be useful to establish a better long-term strategy for urban sustainability.

  • 39. Wu, J.
    et al.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Shen, Jingchun
    University of Nottingham, Ningbo.
    Wu, Y.
    Connelly, K.
    Yang, T.
    Tang, L.
    Xiao, M.
    Xu, P.
    Wang, H.
    A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules2017In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 75, p. 839-854Article in journal (Refereed)
    Abstract [en]

    Thermal absorbers and their integration methods are critical to solar photovoltaic/thermal (PV/T) modules. These two elements directly influence the cooling effort of PV layers and as a result, the related electrical/thermal/overall efficiency. This paper conducts a critical review on the essential thermal absorbers and their integration methods for the currently-available PV modules for the purpose of producing the combined PV/T modules. A brief overview of different PV/T technologies is initially summarized, including aspects of their structure, efficiencies, thermal governing expressions and their applications. Seven different types of thermal absorbers and four corresponding integration methods are subsequently discussed and summarized in terms of their advantages/disadvantages and the associated application for various PV/T modules. Compared to traditional thermal absorbers, such as sheet-and-tube structure, rectangular tunnel with or without fins/grooves and flat-plate tube, these four types, i.e. micro-channel heat pipe array/heat mat, extruded heat exchanger, roll-bond heat exchanger and cotton wick structure, are promising due to the significant enhancement in terms of efficiency, structure, weight, and cost etc. The appropriate or suitable integration method varies in different cases, i.e. the ethylene-vinyl acetate (EVA) based lamination method seems the best option for integration of PV layer with thermal absorber when compared with other conventional methods, such as direct contact, thermal adhesive and mechanical fixing. Finally, suggestions for further research topics are proposed from five aspects. The overall research results would provide useful information for the assistance of further development of solar PV/T modules with high feasibility for widespread application in energy supply even at district or city-level in the near future. © 2016 Elsevier Ltd.

  • 40. Wu, Yupeng
    et al.
    Parham, Mirzaei
    Zhang, Xingxing
    Fang, Wenbo
    Thermal and optical analysis of a passive heat recovery and storage system for building skin2016Conference paper (Refereed)
  • 41. Xiao, M
    et al.
    Tang, L
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Yu-Fat-Lun, I
    Li, G
    Analysis on cooling technologies of concentrated solar power system: a review2017Conference paper (Refereed)
    Abstract [en]

    The application of the Concentrated Solar Power (CSP) system has attracted an ever-increasing attention with the deepening worldwide energy crisis. Operating temperature is one of the most important factors for CSP system that affects the solar photoelectric conversion efficiency. Reasonable cooling method cannot only decrease the operative temperature, balance flare inhomogeneity, also should display the characteristics of convenient installation, low power consumption and high reliability. Based on a comprehensive literature review, this work conducted a thorough compilation on different cooling techniques of CSP system. It includes the commonly used air cooling and water cooling, also illustrates the promising ground coupled cooling, impinging jet cooling, liquid immersion cooling, microchannel cooling, heat pipe cooling and Phase Change Material systems etc. Besides, the advantages and disadvantages of different cooling technologies are briefly analysed. It is expected that this paper could provide guidance for development and optimization of cooling technologies in CSP system.

  • 42. Xiong, Y
    et al.
    Bo, L
    Qiang, M
    Wu, Y
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology. University of Nottingham.
    Xu, P
    Ma, C
    A characteristic study on the start-up performance of molten-salt heat pipes: Experimental investigation2017In: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 82, p. 433-438Article in journal (Refereed)
    Abstract [en]

    This paper reports a fundamental experimental investigation of the start-up characteristics of heat pipes using a dedicated molten-salt mixture as the working fluid. Based on four single salt, i.e. NaNO3(AR), KNO3(AR), LiNO3(AR) and Ca(NO3)2(AR), a quaternary molten-salt working fluid was developed and charged at different masses into four heat pipes with the same dimensions of 980 mm in length and 22 mm in diameter. A parallel comparison on the start-up performance of these heat pipes was then conducted to observe the influence of the charging mass and the inclination angle under the consistent lab-controlled conditions. The experimental results showed the heat pipe with molten-salt charge of 40 g responded much quicker than those with molten salt charge of 60 g, 70 g and 80 g respectively; meanwhile, the molten-salt heat pipe achieved the maximum condensation temperature at inclination angle of 50°. Comparing to the conventional naphthalene heat pipe, the dedicated molten-salt heat pipe had a much shorter start-up time when they were charged with the same amount of 40 g. The overall research result is expected to provide certain guidance for further design and operation of molten-salt heat pipe in high-and-medium-temperature heat transfer and storage scenarios. 

  • 43. Xu, Jihuan
    et al.
    Zhang, Xingxing
    A novel water heating system by low-temperature solar capillary heat pipe assisted with heat pump2012Patent (Other (popular science, discussion, etc.))
  • 44. Xu, Peng
    et al.
    Liu, Chenchen
    Zhang, Xingxing
    Tang, Llewellyn
    Numerical study on the thermal performance of earth-tube system for green building in Ningbo, China2016Conference paper (Refereed)
  • 45. Xu, Peng
    et al.
    Shen, Jingchun
    University of Nottingham, Ningbo.
    Zhang, Xingxing
    University of Hull; University of Nottingham .
    He, Wei
    Zhao, Xudong
    Design, fabrication and experimental study of a novel loop-heat-pipe based solar thermal facade water heating system2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 566-571Article in journal (Refereed)
    Abstract [en]

    This paper investigated a novel loop-heat-pipe based solar thermal facade heat-pump system for hot water from concept design, prototype fabrication and experimental test. Given the specific testing conditions, the solar thermal efficiency of the facade module achieved nearly 0.71 in average and the mean system's COP was about 5.0. It is expected that such novel LHP based solar thermal facade technology would further contributed to the development of the renewable (solar) driven heating/hot water service and therefore lead to significant environmental benefits.

  • 46. Xu, Peng
    et al.
    Shen, Jingchun
    Zhang, Xingxing
    University of Hull; University of Nottingham.
    Zhao, Xudong
    Qian, Yingchu
    Case study of smart meter and in-home display for residential behavior change in Shanghai, China2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 2694-2699Article in journal (Refereed)
    Abstract [en]

    Smart meters and in-home displays (IHD) have been recently adopted to help give residential consumers more control over energy consumption, and to help meet environmental and security of supply objectives. The paper aims to identify the effectiveness of smart meters and real-time IHDs in reducing Shanghai household energy consumption through a pilot investigation. The research results demonstrate the improved awareness, understanding, and attitudes towards the energy saving by smart meters and IHDs.

  • 47. Xu, Peng
    et al.
    Zhang, Xingxing
    Shen, Jingchun
    Yang, Tong
    Deng, Wu
    Tang, Llewellyn
    Empirical study of the energy saving potentials in Shanghai residential buildings through human behaviour change2015Conference paper (Refereed)
  • 48. Xu, Peng
    et al.
    Zhang, Xingxing
    University of Nottingham, Ningbo.
    Shen, Jingchun
    University of Nottingham, Ningbo.
    Yang, Tong
    Deng, Wu
    Tang, Llewellyn
    Empirical study of the energy saving potentials in Shanghai residential buildings through human behaviour change2015Conference paper (Refereed)
  • 49. Xu, Peng
    et al.
    Zhang, Xingxing
    Shen, Jingchun
    University of Nottingham, Ningbo.
    Yang, Tong
    Tang, Llewellyn
    Comparative study of a novel thermal absorber based solar photovoltaic/thermal against photovoltaic system2015Conference paper (Refereed)
  • 50. Xu, Peng
    et al.
    Zhang, Xingxing
    Shen, Jingchun
    Yang, Tong
    Tang, Llewellyn
    Field-experimental study of a novel solar photovoltaic/thermal (PV/T) system2015Conference paper (Refereed)
12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf