Due to the advantages of light weight, corrosion resistant and low cost, hollow fibres have been studied as the substitute for metallic materials. A novel hollow fibre integrated evaporative cooling system, in which the hollow fibre module constitutes as the humidifier and the evaporative cooler, is proposed. This novel hollow fibre integrated evaporative cooling system will provide a comfortable indoor environment for hot and dry area. Moreover, the water vapour can permeate through the hollow fibre effectively, and the liquid water droplets will be prevented from mixing with the processed air. In order to avoid the flow channelling or shielding of adjacent fibres, the fibres inside each bundle were made into a spindle shape to allow maximum contact between the air stream and the fibre. The cooling performances of the proposed novel polymer hollow fibre integrated evaporative cooling system were experimentally investigated under the incoming air temperature in the range of 26 °C to 32 °C and relative humidity of 25%–35%. The effects of air velocities on the cooling effectiveness, heat and mass transfer coefficients, specific water consumption and pressure drop across the polymer hollow fibre module were analysed. Two sets of experimentally derived non-dimensional heat and mass transfer correlations were summarized, which could be favourable for the future design of polymer hollow fibre integrated evaporative cooling system.
An energy auditing tool (PHPP) was evaluated against a dynamic simulation tool (TRNSYS) and used for the assessment of energy conservation measures in a demo case study. The comprehensive comparison of useful heating and cooling demands and loads included three building types (single-, multi-family house, and office), three building energy levels (before renovation and after renovation with a heating demand of 45 and 25 kWh/(m²·a)) and seven European climates. Dynamic simulation results proved PHPP (monthly energy balance) to be able to calculate heating demand and energy savings with good precision and cooling demand with acceptable precision compared to detailed numerical models (TRNSYS). The average deviation between the tools was 8% for heating and 15% for cooling (considering climates with a relevant cooling load only). The higher the thermal envelope quality was, i.e. in case of good energy standards and in cold climates, the better was the agreement. Furthermore, it was confirmed that PHPP slightly overestimates the heating and cooling loads by intention for system design. The renovation design of a real multi-family house was executed using PHPP as energy auditing tool. Several calculation stages were performed for (a) baseline, (b) design phase, and (c) verification with monitoring in order to calculate the corresponding heating demand. The PHPP model was calibrated twice, before and after the renovation. The necessity for tool calibration, especially for the baseline, was highlighted increasing the confidence with respect to a number of boundary conditions. In this study, PHPP was tested as an energy auditing tool aiming to be a versatile and less error-prone alternative to more complex simulation tools, which require much more expert knowledge and training.
Increasing the energy efficiency with a vast impact in the residential building stock requires retrofit solutions that can be exploited with respect to a wide range of different building typologies and climates. Several tools and methodologies are nowadays available both for the assessment of building demands and for the individuation of optimum retrofit solutions. However, they are usually either too complex to be adopted by professionals or, on the contrary, oversimplified to account for the full complexity of a deep envelope and HVAC system retrofit. In this context, this paper describes a methodology developed to generate reliable information on retrofit solutions for typical buildings in different climatic conditions. Detailed numerical models are used to simulate a number of combinations of envelope and HVAC systems retrofit measures and renewable energy integration. Energy performance results are gathered in a database that allows comparing solutions, spanning over a range of more than 250,000 combinations of building types, age of construction, climates, envelope performance levels and HVAC systems configurations. Economic feasibility is also derived for each of the combinations. In this way, the accurateness of a detailed and validated calculation is made available to assist during the decision making process, with minimum computational effort being required by professionals: the variety and density of evaluated combinations allows to easily assess the performance of a specific case by interpolating among instances previously assessed. The applicability of the results to different climates and similar building typologies is verified by a comparison of the database results with a specific case dynamic simulation.
In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.
A large share of the buildings in Europe are old and in need of renovation, both in terms of functional repairs and energy efficiency. While many studies have addressed energy renovation of buildings, they rarely combine economic and environmental life cycle analyses, particularly for office buildings. The present paper investigates the economic feasibility and environmental impact of energy renovation packages for European office buildings. The renovation packages, including windows, envelope insulation, heating, cooling and ventilation systems and solar photovoltaics (PV), were evaluated in terms of life cycle cost (LCC) and life cycle assessment (LCA) through dynamic simulation for different European climates. Compared to a purely functional renovation, the studied renovation packages resulted in up to 77% lower energy costs, 19% lower total annualized costs, 79% lower climate change impact, 89% lower non-renewable energy use, 66% lower particulate matter formation and 76% lower freshwater eutrophication impact over a period of 30 years. The lowest total costs and environmental impact, in all of the studied climates, were seen for the buildings with the lowest heating demand. Solar PV panels covering part of the electricity demand could further reduce the environmental impact and, at least in southern Europe, even reduce the total costs. © 2017 Elsevier B.V.
This study evaluates how the principal function of bi-directional electric meters affects the monitored amount of self-consumed and produced excess electricity for dwelling buildings connected to the grid by three phases. The electric meters momentarily record the sum of the phases or the phases individually and then summarize the recorded values to a suitable time period and is then collected by the grid owner. In Sweden, both electric meter configurations fulfill laws and regulations.
The meter configuration affects the monitored distribution of self-consumed and produced excess electricity significantly for the investigated single-family house but is negligible for the investigated multi-dwelling buildings. The monitored self-consumed electricity produced by the PV installation for the single-family house varies between 24% and 55% depending on the configuration and how the inverter is installed for the investigated year. The difference in economic value for the produced electricity varies between 79.3 to 142 Euros.
Due to the electric meter configuration, the profitability of PV systems will be different for identical single-family houses with identical conditions. This should be corrected for a well-functioning market. It is also important to decide how the configuration should be designed to ensure that different incentives and enablers results in desired effects.
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods.
Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps.
Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components.
Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories.
Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.
The aim of the paper was to present a dedicated theoretical investigation into the thermal performance of a novel solar loop-heat-pipe façade based heat pump water heating system. This involved thermo-fluid analyses, computer numerical model development, the model running up, modelling result analyses and conclusion. An energy balance network was established on each part and the whole range of the system to address the associated energy conversion and transfer processes. On basis of this, a computer numerical model was developed and run up to predict the thermal performance of such a system at different system configurations, layouts and operational conditions. It was suggested that the loop heat pipes could be filled with either water, R134a, R22 or R600a; of which R600a is the favourite working fluid owing to its relatively larger heat transfer capacity and positive pressure in operation. Variations in the system configuration, i.e., glazing covers, heat exchangers, would lead to identifiable differences in the thermal performance of the system, represented by the thermal efficiency and COP. Furthermore, impact of the external operational parameters, i.e., solar radiation and ambient air temperature, to the system's thermal performance was also investigated. The research was based on an innovative loop-heat-pipe façade and came up with useful results reflecting the thermal performance of the combined system between the façade and heat pump. This would help promote development and market penetration of such an innovative solar heating technology, and thus contribute to achieving the global targets in energy saving and carbon emission reduction.
Configuring the number and size of chillers in a multiple-chiller plant properly is an efficient way to improve the plant energy efficiency. At the design stage, the optimal configuration can be achieved through matching the capacity to load as closely as possible across the full-load profile. However, in spite of the fact that current literature offers practical recommendations, a systematic method to optimize the configuration of multiple-chiller plants is lacking. Due to the lack of accurate information at the design stage and only limited knowledge of the eventual realization it is hard to predict the building’s cooling load. Moreover, there is no operational data to predict the system performance. Both explain the existence of uncertainty in the HVAC plant design process. This paper, therefore, proposes a strategy to optimize the configuration of multiple-chiller plants, which takes account of the load side uncertainty as well as the COP uncertainty and selects the optimal configuration through a life-cycle analysis. Both the load side uncertainty and the COP uncertainty are quantified using statistical distributions. To facilitate applications, the distributions of the cooling load profile of different types of buildings under different weather conditions are investigated and are classified into four categories, and the optimal configuration schemes under each type of cooling load distribution are analyzed and summarized in a tabulated form.
Heating, ventilation and air-conditioning (HVAC) systems are widely equipped in modern buildings to provide indoor thermal comfort and guarantee indoor air quality. In a conventional design, the components of an HVAC system are sized according to a deterministic peak load, predicted according to typical weather condition, building physics and internal load. It has been shown by many studies that this prediction is associated with uncertainties since building physical parameters cannot be accurately set and the weather and the internal load used in the design may be different from the real situation after use. Therefore, uncertainty cannot be neglected in order to properly size a HVAC system. In this paper, a prototype of HVAC system design under uncertainty is proposed, which is able to take uncertainty directly in the design, and most importantly it can assess the performance of a design at the design stage in term of multiple performance indices and the customers’ requirements and preferences, i.e. the new design method falls in the framework of multiple criteria decision making. Case studies are used to illustrate the design procedure, and the result is compared with that of a conventional design method.
The choice of building envelope is critical for the energy performance of buildings. The major part of the energy used by a building during its lifetime is used for maintaining a suitable interior thermal climate under varying exterior conditions. Although exterior heat radiation properties (i.e. total solar reflectivity and long wave thermal emissivity) have been well accepted to have a large impact on the need for active cooling in warmer climate, the effect of a reduced thermal emissivity on interior surfaces on the building thermal energy flux is rarely studied. This paper addresses the sensitivity of the thermal energy flux through a sandwich panel, by systematically varying the surface thermal emissivity (both interior and exterior) and total solar reflectance of exterior surface, for three geographical locations: southern, middle and northern Europe. A model is introduced for calculating the effect of both interior and exterior optical properties of a horizontal roof panel in terms of net energy flux per unit area. The results indicate potential energy saving by the smart choice of optical properties of interior and exterior surfaces.
This study investigates how electrically heated single-family houses can be converted to wood pellets- and solar heating using pellet stoves and solar heating systems. Four different system concepts are presented and system simulations in TRNSYS evaluate the thermal performance and the electrical savings possible for two different electrically heated single-family houses. Simulations show that the electricity savings using a wood pellet stove are greatly affected by the level of comfort, the house plan, the system choice and if the internal doors are open or closed. Installing a stove with a water-jacket connected to a radiator system and a hot water store has the advantage that heat can be transferred to domestic hot water and be distributed to other rooms. Such systems leads to that more electricity can be replaced, especially in houses having a traditional plan. Though it is unnecessary to have too many radiators connected to a stove with a low fraction of energy heating the water jacket. Today’s most common control strategy for stoves, (the on/off-control) results in unnecessarily high emissions. A more advanced control varying the heating rate from maximum to minimum to keep a constant room temperature reduces the number of starts and stops and thereby the emissions.
Net zero energy buildings (NZEBs) have been widely considered to be an effective solution to the increasing energy and environmental problems. Most conventional design methods for NZEB systems are based on deterministic data/information and have not systematically considered the significant uncertainty impacts. Consequently, the conventional design methods lead to popular oversized problems in practice. Meanwhile, NZEB system design methods need to consider customers’ actual performance preferences but few existing methods can take account of them. Therefore, this study proposes a multi-criteria system design optimization for NZEBs under uncertainties. In the study, three performance criteria are used to evaluate the overall NZEB system performance based on user-defined weighted factors. Case studies are conducted to demonstrate the effectiveness of the proposed method.
The building sector accounts for a large part of the energy use in Europe and is a sector where the energy efficiency needs to improve in order to reach the EU energy and climate goals. The energy efficiency goal is set in terms of primary energy even though there are different opinions on how to calculate primary energy. When determining the primary energy use in a building several assumptions are made regarding allocation and the value of different energy sources. In order to analyze the difference in primary energy when different methods are used, this study use 16 combinations of different assumptions to calculate the primary energy use for three simulated heating and ventilations systems in a building. The system with the lowest primary energy use differs depending on the method used. Comparing a system with district heating and mechanical exhaust ventilation with a system with district heating, mechanical exhaust ventilation and exhaust air heat pump, the former has a 40% higher primary energy use in one scenario while the other has a 320% higher in another scenario. This illustrates the difficulty in determining which system makes the largest contribution to fulfilling the EU energy and climate goals.
This article presents the monitoring results of a thermally driven chiller (TDC) driven by district heat from a network supplied by a centralised combined heat and power (CHP) fired with municipal waste. The main objective of this article is to analyse the monitoring results obtained from the demonstration and calibrate a system model that is later used for parametric studies in order to find improved system design and control. The calibration of the system model was made in three stages and all the energy performance figures were within 4% of the measured values. Results show that the TDC system is capable of providing maximum thermal and electrical COP's of 0.50 and 4.6 respectively during the hottest period. For the complete monitoring period during the summer of 2008, the figures were 0.41 and 2.1. The lower figures were due to continuous pump operation inside the TDC even during periods of no cold production and a period when no cold was produced. However the internal pumps inside the TDC have been removed in the new version TDC to increase the electrical COP. System simulation and parametric studies will be employed to further determine how the electrical COP can be improved.