du.sePublications
Change search
Refine search result
12 51 - 64 of 64
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51. Pan, Song
    et al.
    Du, Saisai
    Wang, Xinru
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Xia, Liang
    Liu, Jiaping
    Pei, Fei
    Wei, Yixuan
    Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing, China2019In: Sustainable cities and society, ISSN 2210-6707, Vol. 45, p. 366-377Article in journal (Refereed)
    Abstract [en]

    The particulate matters (PM10 and PM2.5) inside urban subway stations greatly influence indoor air quality and passenger comfort. This study aims to analyze and interpret the concentrations of PM10 and PM2.5, measured in several subway stations from October 9th to 22nd, 2016 in Beijing, China. The overall methodology was based on the Statistical Package for Social Science (SPSS) software while General linear model (GLM) and correlation analysis were further applied to examine the sensitivities of different variables to the particle concentrations. The data analysis showed the average overall mass ratio of PM concentrations inside subway station is about 68.7%, much lower than outdoor condition (79.6%). In the areas of the station hall and platform, the real-time PM10 and PM2.5 concentrations varied periodically. In working and operation offices, all rooms had much higher PM concentrations than the outdoor environment when its pollution level was level 3, in which the facility room reached the highest level, while the closed meeting room had the lowest. Correlation analysis results indicated that PM10 and PM2.5 concentrations were mutually correlated (average R2 = 0.854), and a strong linear correlation (R2 = 0.897) of the subway-station PM concentrations to the outdoor PM conditions, regardless of the outdoor atmospheric PM concentrations pollution level was. Nevertheless, the impact of passenger number and temperature & humidity on the station PM concentrations was less, when compared to the outdoor environment. This paper is expected to provide useful information for further research and design of effective prevention measures on PM in local subway stations, towards a more sustainable and healthier built environment in the city underground. 

  • 52.
    Perez de la Mora, Nicolas
    et al.
    Universidad de las Islas Baleares.
    Bava, Federico
    Technical University of Denmark.
    Andersen, Martin
    Dalarna University, School of Technology and Business Studies, Energy Technology. Chalmers University of Technology.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Lennermo, Gunnar
    Mälardalens Hogskola.
    Nielsen, Christian
    PanEnergi.
    Furbo, Simon
    Technical University of Denmark.
    Martínes-Moll, Víctor
    Universidad de las Islas Baleares.
    Solar district heating and cooling: A review2017In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, p. 1-23Article in journal (Refereed)
    Abstract [en]

    Both district heating and solar collector systems have been known and imple- mented for many years. However, the combination of the two, with solar collec- tors supplying heat to the district heating network, is relatively new, and no comprehensive review of scientific publications on this topic could be found. Thus, this paper summarizes the literature available on solar district heating and presents the state of the art and real experiences in this field. Given the lack of a generally accepted convention on the classification of solar district heating systems, this paper distinguishes centralized and decentralized solar district heating as well as block heating. For the different technologies, the paper describes commonly adopted control strategies, system configurations, types of installation, and integration. Real‐world examples are also given to provide a more detailed insight into how solar thermal technology can be integrated with district heating. Solar thermal technology combined with thermally driven chillers to provide cooling for cooling networks is also included in this paper. In order for a technology to spread successfully, not only technical but also eco- nomic issues need to be tackled. Hence, the paper identifies and describes dif- ferent

  • 53. Petrovic, Bojana
    et al.
    Myhren, Jonn Are
    Dalarna University, School of Technology and Business Studies, Construction.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Wallhagen, Marita
    Eriksson, Ola
    Life cycle assessment of a wooden single-family house in Sweden2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 251, p. 113-253, article id 113253Article in journal (Refereed)
    Abstract [en]

    To understand the reasons behind the large environmental impact from buildings the whole life cycle needs to be considered. Therefore, this study evaluates the carbon dioxide emissions in all stages of a single-family house in Sweden from the production of building materials, followed by construction and user stages until the end-of-life of the building in a life cycle assessment (LCA). The methodology applied is attributional life cycle assessment (LCA) based on ‘One Click LCA’ tool and a calculated life span of 100 years. Global warming potential (GWP) and primary energy (PE) are calculated by using specific data from the case study, furthermore the data regarding building materials are based on Environmental Product Declarations (EPDs). The results show that the selection of wood-based materials has a significantly lower impact on the carbon dioxide emissions in comparison with non-wood based materials. The total emissions for this single-family house in Sweden are 6 kg CO 2 e/m 2 /year. The production stage of building materials, including building systems and installations represent 30% of the total carbon dioxide equivalent emissions, while the maintenance and replacement part represents 37%. However, energy use during the in-use stage of the house recorded lower environmental impact (21%) due to the Swedish electricity mix that is mostly based on energy sources with low carbon dioxide emissions. The water consumption, construction and the end-of-life stages have shown minor contribution to the buildings total greenhouse gas (GHG) emissions (12%). The primary energy indicator shows the largest share in the operational phase of the house.

  • 54.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. Department of Energy Technology, KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Influence of hydraulics and control of thermal storage in solar assisted heat pump combisystems2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 48, p. 946-955Article in journal (Refereed)
    Abstract [en]

    This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

  • 55.
    Poppi, Stefano
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. KTH.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Heinz, Andreas
    Hengel, Franz
    Cheze, David
    Mojic, Igor
    Cialani, Catia
    Dalarna University, School of Technology and Business Studies, Economics.
    Analysis of system improvements in solar thermal and air source heat pump combisystems2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 173, p. 606-623Article in journal (Refereed)
    Abstract [en]

    A solar thermal and heat pump combisystem is one of many system alternatives on the market for supplying domestic hot water (DHW) and space heating (SH) in dwellings. In this study a reference solar thermal and air source heat pump combisystem was defined and modelled based on products available on the market. Based on the results of an extensive literature survey, several system variations were investigated to show the influence of heat pump cycle, thermal storage and system integration on the use of electricity for two houses in the climates of Zurich and Carcassonne. A singular economic cash flow analysis was carried out and the “additional investment limit” of each system variation was determined for a range of economic boundary conditions. This is the maximum extra investment cost for the system variant compared to the reference system that will give a break even result for a 10 year period. The results show that variations in electricity price affects the additional investment limit far more than the other economic parameters. Several of the variants show potential for achieving a cost benefit, but the potential varies a lot depending on load and climate boundary conditions. For all variants, the biggest difference in electricity savings was found for Zurich rather than in Carcassonne, which is explained by the larger heating load. However, in three cases the largest savings were for the SFH45 house despite the fact that the annual electricity use of the system is much lower than that for the SFH100 house, 3581 kW h/year compared to 8340 kW h/year. This was attributed to the fact that, in these cases, the operating level of the space heating circuit played a significant role, the SFH45 house being supplied with a 35/30 °C heating system while the SFH100 was supplied with a 55/45 °C heating system.

  • 56.
    Psimopoulos, Emmanouil
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. Uppsala University.
    Bee, Elena
    University of Trento, Trento, Italy.
    Luthander, Rasmus
    Uppsala University.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Smart control strategy for PV and heat pump system utilizing thermal and electrical storage and forecast services2017Conference paper (Refereed)
    Abstract [en]

    In this study, a detailed model of a single-family house with exhaust air heat pump, PV system and energy hub developed in the simulation software TRNSYS 17 is used to evaluate energy management algorithms that utilize weather and electricity price forecasts. A system with independent PV and heat pump is used as a base case. The proposed control strategy is applied to the base case to optimize the available PV electricity production using short-term weather and electricity price forecasts. The three smart and predictive control algorithms were developed with the scope to minimize final energy by the use of the thermal storage of the building, the hot water tank and electrical storage. The results show reduction of the final energy of 26.4%, increase of the self-consumption to 60% and decrease of the annual cost of 15% when using the forecast services in combination with thermal and electrical storage compared to the base case.

  • 57.
    Psimopoulos, Emmanouil
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology. Uppsala University.
    Bee, Elena
    Widén, Joakim
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 249, p. 355-367Article in journal (Refereed)
    Abstract [en]

    Operational control strategies for the heating system and “smart” utilization of energy storage were developed and analyzed in a simulation based case study of a single-family house with exhaust air heat pump and photovoltaic system. Rule based control algorithms that can easily be implemented into modern heat pump controllers were developed with the aim to minimize final energy and maximize self-consumption by the use of the thermal storage of the building, the hot water tank and electrical storage. Short-term weather and electricity price forecasts are used in some of the algorithms. Heat supply from an exhaust air heat pump is limited by the ventilation flow rate fixed by building codes, and compact systems employ an electric heater as backup for both space heating and hot water. This heater plays an important role in the energy balance of the system. A typical system designed for new detached houses in Sweden was chosen for the study. This system, together with an independent photovoltaic system, was used as a base case and all results are compared to those for this base case system. TRNSYS 17 was used to model the building and system as well as the control algorithms, and special care was taken to model the use of the backup electric heater as this impacts significantly on final energy use. Results show that the developed algorithms can reduce final energy by 5–31% and the annual net cost for the end user by 3–26%, with the larger values being for systems with a battery storage. Moreover, the annual use of the backup electric heater can be decreased by 13–30% using the carefully designed algorithms.

  • 58.
    Selva Marti, Salvador
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Aerial Thermography Inspections in Large-Scale PV Plants2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In order to successfully compete against the use of fossil fuels to generate electricity, one of the challenges in the photovoltaic (PV) business currently in focus is on the asset management of large PV plants, in which developing control techniques to prognosticate and evaluate the future energy performance will be essential. Infrared thermography inspections can give meaningful support to assess the quality and performance of PV modules. However, the implementation of a cost-effective method to scan and check huge PV plants represents different challenges, such as the cost and time of detecting PV module defects with their classification and exact localization within the solar plant. In this context, it has recently been investigated the potential of a new innovative technology in the PV plants monitoring operations by using drones.

    The main purpose of this work is to establish a scientific basis for the interpretation of thermographic images taken by drones, in particular, regarding the influence of thermographic irregularities which will negatively influence the performance of PV plants.

    The drone is employed to monitor PV modules conditions by using special thermography sensors mounted on it in order to scan images. The captured images are then automatically sent to a technical office database for the image processing software. This special software receives, stores and analyses the captured images to detect the specific defect on the PV modules. Then, all information is processed and reported to the final decision-making team to decide about the best solution for the particular degraded PV module, in relation with the requirements from the operation and maintenance (O&M) services.

    In this particularly study project of the inspected PV plant situated in the UK, which has been carried out by trained personnel at Quintas Energy (QE), the majority of identified faults, which influence the PV module performance (especially the power output significantly), are on a sub-panel level, either individual cells or uneven hot spots. There are also some modules with bypass diode faults as well as a string fault was detected. Such faults must be repaired by the PV module manufacturer, in relation to the manufacturer’s warranties, without any cost at all since the PV modules are indeed still in warranty.

    It has been concluded that, in comparison with traditional manned systems by using hand-held cameras, the main functionality of using drones is the early fault diagnosis which could reduce corrective maintenance activities, since defects are easily and quickly identified and, then, repaired. This fact could reduce defects to become more serious and, thus, more difficult to be repaired, along with their correspondent production losses and costs.

    QE has learned by making mistakes during this project study and gained experience of this unmanned aerial vehicles (UAV) technology. Currently, they are in the process of improving this technique and will continue to implement it to all their PV plants since the efficiency of PV systems can be significantly improved by appropriate use of O&M instruments and benefit from innovative monitoring tools, such as the unmanned aerial technology.

  • 59.
    Tjäder, Jonas
    et al.
    STRI.
    Ackeby, Susanne
    STRI.
    Bastholm, Caroline
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    The role and interaction of microgrids and centralized grids in developing modern power systems2016Conference paper (Refereed)
  • 60.
    Weiss, Philipp
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Energy savings potential in existing houses: Energy simulation results for Dalarna's single-family housing stock2012Report (Other academic)
  • 61.
    Weiss, Philipp
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Simple Question, Complex Answer: Pathways Towards a 50% Decrease in Building Energy Use2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Addressing building energy use is a pressing issue for building sector decision makers across Europe. In Sweden, some regions have adopted a target of reducing energy use in buildings by 50% until 2050. However, building codes currently do not support as ambitious objectives as these, and novel approaches to addressing energy use in buildings from a regional perspective are called for. The purpose of this licentiate thesis was to provide a deeper understanding of most relevant issues with regard to energy use in buildings from a broad perspective and to suggest pathways towards reaching the long-term savings objective. Current trends in building sector structure and energy use point to detached houses constructed before 1981 playing a key role in the energy transition, especially in the rural areas of Sweden. In the Swedish county of Dalarna, which was used as a study area in this thesis, these houses account for almost 70% of the residential heating demand. Building energy simulations of eight sample houses from county show that there is considerable techno-economic potential for energy savings in these houses, but not quite enough to reach the 50% savings objective. Two case studies from rural Sweden show that savings well beyond 50% are achievable, both when access to capital and use of high technology are granted and when they are not. However, on a broader scale both direct and indirect rebound effects will have to be expected, which calls for more refined approaches to energy savings. Furthermore, research has shown that the techno-economic potential is in fact never realised, not even in the most well-designed intervention programmes, due to the inherent complexity of human behaviour with respect to energy use. This is not taken account of in neither current nor previous Swedish energy use legislation. Therefore an approach that considers the technical prerequisites, economic aspects and the perspective of the many home owners, based on Community-Based Social Marketing methodology, is suggested as a way forward towards reaching the energy savings target.

  • 62.
    Wilson, Jason Clifford
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    A techno-economic environmental approach to improving the performance of PV, battery, grid-connected, diesel hybrid energy systems: A case study in Kenya2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Backup diesel generator (DG) systems continue to be a heavily polluting and costly solution for institutions with unreliable grid connections. These systems slow economic growth and accelerate climate change. Photovoltaic (PV), energy storage (ES), grid connected, DG – Hybrid Energy Systems (HESs) or, PV-HESs, can alleviate overwhelming costs and harmful emissions incurred from traditional back-up DG systems and improve the reliability of power supply. However, from project conception to end of lifetime, PV-HESs face significant barriers of uncertainty and variable operating conditions. The fit-and-forget solution previously applied to backup DG systems should not be adopted for PV-HESs.

    To maximize cost and emission reductions, PV-HESs must be adapted to their boundary conditions for example, irradiance, temperature, and demand. These conditions can be defined and monitored using measurement equipment. From this, an opportunity for performance optimization can be established. The method demonstrated in this study is a techno-economic and environmental approach to improving the performance of PV-HESs. The method has been applied to a case study of an existing PV-HES in Kenya. A combination of both analytical and numerical analyses has been conducted. The analytical analysis has been carried out in Microsoft Excel with the intent of being easily repeatable and practical in a business environment. Simulation analysis has been conducted in improved Hybrid Optimization by Genetic Algorithms (iHOGA), which is a commercially available software for simulating HESs.

    Using six months of measurement data, the method presented identifies performance inefficiencies and explores corrective interventions. The proposed interventions are evaluated, by simulation analyses, using a set of techno-economic and environment key performance indicators, namely: Net Present Cost (NPC), generator runtime, fuel consumption, total system emissions, and renewable fraction. Five corrective interventions are proposed, and predictions indicate that if these are implemented fuel consumption can be reduced by 70 % and battery lifetime can be extended by 28 %, net present cost can be reduced by 30 % and emissions fall by 42 %. This method has only been applied to a single PV-HES; however, the impact this method could have on sub-Saharan Africa as well as similar regions with unreliable grid connections is found to be significant. In the future, in sub-Saharan Africa alone, over $500 million dollars (USD) and 1.7 billion kgCO2 emissions could be saved annually if only 25 % of the fuel savings identified in this study were realized. The method proposed here could be improved with additional measurement data and refined simulation models. Furthermore, this method could potentially be fully automated, which could allow it to be implemented more frequently and at lower cost.

  • 63. Zhang, Nan
    et al.
    Chen, Xiangjie
    Su, Yuehong
    Zheng, Hongfei
    Ramandan, Omar
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Chen, Hongbin
    Riffat, Saffa
    Numerical investigations and performance comparisons of a novel cross-flow hollow fiber integrated liquid desiccant dehumidification system2019In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 182, p. 1115-1131Article in journal (Refereed)
    Abstract [en]

    The heat and mass transfer process of a novel cross-flow hollow fiber integrated liquid desiccant dehumidification system is analysed numerically. Compared with other porous media or packing towers in dehumidification applications, hollow fibre membranes have significant advantages including low weight, corrosion resistant and no liquid droplet carryover. A novel air-KCOOH cross-flow dehumidification system was designed and manufactured, with 5500 hollow fibres formed into a circular module. The variations of the dehumidification effectiveness and moisture removal rates were studied numerically and validated against experimental results under the incoming air mass flow rates of 0.08-0.26kg/s and relative humidity from 55% to 75%. The dehumidification performance comparisons for the proposed system using CaCl2, LiCl and KCOOH as the desiccants have been conducted as well. The results demonstrated that under the same m*(ratio between solution mass flow rate to the air mass flow rate), the proposed system using 62% KCOOH could achieve approximately the same latent effectiveness compared with 40% CaCl2 and 32% LiCl, with the at least 3.1% sensible effectiveness increased by. Therefore, it could be concluded that the proposed system using KCOOH as desiccant could be more applicable for dehumidification purpose compared with other systems using conventional liquid desiccants.

  • 64.
    Ålander, Atte
    Dalarna University, School of Technology and Business Studies, Energy and Environmental Technology.
    Electricity Supply Solutions for an Educational Center in Tanzania2013Independent thesis Advanced level (degree of Master (One Year)), 12 credits / 18 HE creditsStudent thesis
    Abstract [en]

    The aim of this study was to investigate electricity supply solutions for an educationalcenter that is being built in Chonyonyo Tanzania. Off-grid power generation solutions andfurther optimization possibilities were studied for the case.The study was done for Engineers Without Borders in Sweden. Who are working withMavuno Project on the educational center. The school is set to start operating in year 2015with 40 girl students in the beginning. The educational center will help to improve genderequality by offering high quality education in a safe environment for girls in rural area.It is important for the system to be economically and environmentally sustainable. Thearea has great potential for photovoltaic power generation. Thus PV was considered as theprimary power generation and a diesel generator as a reliable backup. The system sizeoptimization was done with HOMER. For the simulations HOMER required componentdata, weather data and load data. Common components were chose with standardproperties, the loads were based on load estimations from year 2011 and the weather datawas acquired from NASA database. The system size optimization result for this base casewas a system with 26 kW PW; 5.5 kW diesel generator, 15 kW converter and 112 T-105batteries. The initial cost of the system was 55 875 €, the total net present cost 92 121 €and the levelized cost of electricity 0.264 €/kWh.In addition three optimization possibilities were studied. First it was studied how thesystem should be designed and how it would affect the system size to have night loads(security lights) use DC and could the system then be extended in blocks. As a result it wasfound out that the system size could be decreased as the inverter losses would be avoided.Also the system extension in blocks was found to be possible. The second study was aboutinverter stacking where multiple inverters can work as one unit. This type of connectionallows only the required number of inverters to run while shutting down the excess ones.This would allow the converter-unit to run with higher efficiency and lower powerconsumption could be achieved. In future with higher loads the system could be easilyextendable by connecting more inverters either in parallel or series depending on what isneeded. Multiple inverters would also offer higher reliability than using one centralizedinverter. The third study examined how the choice of location for a centralized powergeneration affects the cable sizing for the system. As a result it was found that centralizedpower generation should be located close to high loads in order to avoid long runs of thickcables. Future loads should also be considered when choosing the location. For theeducational center the potential locations for centralized power generation were found outto be close to the school buildings and close to the dormitories.

12 51 - 64 of 64
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf