du.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Eriksson, Ronnie
    et al.
    Jobs, Magnus
    Dalarna University, School of Education, Health and Social Studies, Medical Science.
    Ekstrand, Charlotta
    Ullberg, Måns
    Hermann, Björn
    Landegren, Ulf
    Nilsson, Mats
    Blomberg, Jonas
    Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real-time PCR and specific suspension array readout2009In: Journal of Microbiological Methods, ISSN 0167-7012, E-ISSN 1872-8359, Vol. 78, no 2, p. 195-202Article in journal (Refereed)
    Abstract [en]

    A new concept for multiplex detection and quantification of microbes is here demonstrated on a range of infectious fungal species. Padlock probe methodology in conjunction with qPCR and Luminex™ technology was used for simultaneous detection of ten fungal species in one single experiment. By combining the multiplexing properties of padlock probes and Luminex™ detection with the well established quantitative characteristics of qPCR, quantitative microbe detection was done in 10-plex mode. A padlock probe is an oligonucleotide that via a ligation reaction forms circular DNA when hybridizing to specific target DNA. The region of the padlock probe that does not participate in target DNA hybridization contains generic primer sequences for amplification and a tag sequence for Luminex™ detection. This was the fundament for well performing multiplexing. Circularized padlock probes were initially amplified by rolling circle amplification (RCA), followed by a SybrGreen™ real time PCR which allowed an additive quantitative assessment of target DNA in the sample. Detection and quantification of amplified padlock probes were then done on color coded Luminex™ microspheres carrying anti-tag sequences. A novel technique, using labeled oligonucleotides to prevent reannealing of amplimers by covering the flanks of the address sequence, improved the signal to noise ratio in the detection step considerably. The method correctly detected fungi in a variety of clinical samples and offered quantitative information on fungal nucleic acid.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf