du.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aghanavesi, Somayeh
    et al.
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Bergquist, Filip
    Nyholm, Dag
    Senek, Marina
    Memedi, Mevludin
    Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge2019In: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208Article in journal (Refereed)
    Abstract [en]

    Parkinson’s disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.

  • 2.
    Aghanavesi, Somayeh
    et al.
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Memedi, Mevludin
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Dougherty, Mark
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Nyholm, Dag
    Westin, Jerker
    Dalarna University, School of Technology and Business Studies, Computer Engineering.
    Verification of a method for measuring Parkinson’s disease related temporal irregularity in spiral drawings2017In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, no 10, article id 2341Article in journal (Refereed)
    Abstract [en]

    Parkinson's disease (PD) is a progressive movement disorder caused by the death of dopamine-producing cells in the midbrain. There is a need for frequent symptom assessment, since the treatment needs to be individualized as the disease progresses. The aim of this paper was to verify and further investigate the clinimetric properties of an entropy-based method for measuring PD-related upper limb temporal irregularities during spiral drawing tasks. More specifically, properties of a temporal irregularity score (TIS) for patients at different stages of PD, and medication time points were investigated. Nineteen PD patients and 22 healthy controls performed repeated spiral drawing tasks on a smartphone. Patients performed the tests before a single levodopa dose and at specific time intervals after the dose was given. Three movement disorder specialists rated videos of the patients based on the unified PD rating scale (UPDRS) and the Dyskinesia scale. Differences in mean TIS between the groups of patients and healthy subjects were assessed. Test-retest reliability of the TIS was measured. The ability of TIS to detect changes from baseline (before medication) to later time points was investigated. Correlations between TIS and clinical rating scores were assessed. The mean TIS was significantly different between healthy subjects and patients in advanced groups (p-value = 0.02). Test-retest reliability of TIS was good with Intra-class Correlation Coefficient of 0.81. When assessing changes in relation to treatment, TIS contained some information to capture changes from Off to On and wearing off effects. However, the correlations between TIS and clinical scores (UPDRS and Dyskinesia) were weak. TIS was able to differentiate spiral drawings drawn by patients in an advanced stage from those drawn by healthy subjects, and TIS had good test-retest reliability. TIS was somewhat responsive to single-dose levodopa treatment. Since TIS is an upper limb high-frequency-based measure, it cannot be detected during clinical assessment.

  • 3.
    Javed, Farrukh
    et al.
    Business School, Örebro University.
    Thomas, Ilias
    Dalarna University, School of Technology and Business Studies, Microdata Analysis.
    Memedi, Mevludin
    Business School, Örebro University.
    A comparison of feature selection methods when using motion sensors data: a case study in Parkinson’s disease2018In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, p. 5426-5429Conference paper (Refereed)
    Abstract [en]

    The objective of this study is to investigate the effects of feature selection methods on the performance of machine learning methods for quantifying motor symptoms of Parkinson's disease (PD) patients. Different feature selection methods including step-wise regression, Lasso regression and Principal Component Analysis (PCA) were applied on 88 spatiotemporal features that were extracted from motion sensors during hand rotation tests. The selected features were then used in support vector machines (SVM), decision trees (DT), linear regression, and random forests models to calculate a so-called treatment-response index (TRIS). The validity, testretest reliability and sensitivity to treatment were assessed for each combination (feature selection method plus machine learning method). There were improvements in correlation coefficients and root mean squared error (RMSE) for all the machine learning methods, except DTs, when using the selected features from step-wise regression inputs. Using step-wise regression and SVM was found to have better sensitivity to treatment and higher correlation to clinical ratings on the Unified PD Rating Scale as compared to the combination of PCA and SVM. When assessing the ability of the machine learning methods to discriminate between tests performed by PD patients and healthy controls the results were mixed. These results suggest that the choice of feature selection methods is crucial when working with data-driven modelling. Based on our findings the step-wise regression can be considered as the method with the best performance.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf