Dalarna University's logo and link to the university's website

du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Additive Manufacturing of CoCrFeMnNi High-Entropy Alloy/AISI 316L Stainless Steel Bimetallic Structures
Show others and affiliations
2022 (English)In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, article id 2200341Article in journal (Refereed) Published
Abstract [en]

CoCrFeMnNi high-entropy alloy (HEA)/AISI 316L stainless steel bimetals were additively fabricated using selective laser melting (SLM). The bimetal structure comprises three regions, i.e., CoCrFeMnNi-HEA, AISI 316L stainless steel, and an interface between CoCrFeMnNi-HEA, AISI 316L stainless steel. SLM processing results in the formation of columnar grains extending over many built layers epitaxially in a preferential growth direction. The Vickers microhardness ranges mainly between 250 and 275 HV0.5 in all three observed regions. In addition, only a marginal variation in tensile strength is observed between the CoCrFeMnNi-HEA, AISI 316L stainless steel, and the CoCrFeMnNi-HEA/AISI 316L stainless steel bimetal. The unique higher work hardening behavior of the CoCrFeMnNi-HEA prevents failure along the CoCrFeMnNi-HEA side in the bimetallic structure during plastic deformation. The CoCrFeMnNi-HEA shows higher pitting susceptibility than the AISI 316L stainless steel in the bimetallic structure due to its lower pitting potential. Further, the presence of pores and lack of fusion spots further decreases the pitting resistance of the CoCrFeMnNi-HEA. Hence, the bimetal is prone to more preferential corrosion attack along the CoCrFeMnNi-HEA side due to its anodic behavior and defects.

Place, publisher, year, edition, pages
2022. article id 2200341
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:du-42102DOI: 10.1002/adem.202200341ISI: 000818836800001Scopus ID: 2-s2.0-85133038808OAI: oai:DiVA.org:du-42102DiVA, id: diva2:1687449
Available from: 2022-08-15 Created: 2022-08-15 Last updated: 2023-03-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jayamani, Jayaraj

Search in DiVA

By author/editor
Jayamani, Jayaraj
By organisation
Materials Technology
In the same journal
Advanced Engineering Materials
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf